Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa A. Starovasnik is active.

Publication


Featured researches published by Melissa A. Starovasnik.


Immunity | 2002

BAFF/BLyS Receptor 3 Binds the B Cell Survival Factor BAFF Ligand through a Discrete Surface Loop and Promotes Processing of NF-κB2

Nobuhiko Kayagaki; Minhong Yan; Dhaya Seshasayee; Hua Wang; Wyne P. Lee; Dorothy French; Iqbal S. Grewal; Andrea G. Cochran; Nathaniel C. Gordon; JianPing Yin; Melissa A. Starovasnik; Vishva M. Dixit

The TNF-like ligand BAFF/BLyS is a potent survival factor for B cells. It binds three receptors: TACI, BCMA, and BR3. We show that BR3 signaling promotes processing of the transcription factor NF-kappaB2/p100 to p52. NF-kappaB2/p100 cleavage was abrogated in B cells from A/WySnJ mice possessing a mutant BR3 gene, but not in TACI or BCMA null B cells. Furthermore, wild-type mice injected with BAFF-neutralizing BR3-Fc protein showed reduced basal NF-kappaB2 activation. BR3-Fc treatment of NZB/WF1 mice, which develop a fatal lupus-like syndrome, inhibited NF-kappaB2 processing and attenuated the disease process. Since inhibiting the BR3-BAFF interaction has therapeutic ramifications, the ligand binding interface of BR3 was investigated and found to reside within a 26 residue core domain. When stabilized within a structured beta-hairpin peptide, six of these residues were sufficient to confer binding to BAFF.


The EMBO Journal | 2001

IL‐17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL‐17F, and implications for receptor binding

Sarah G. Hymowitz; Ellen Filvaroff; JianPing Yin; James Lee; Liping Cai; Philip Risser; Miko Maruoka; Weiguang Mao; Jessica Foster; Robert F. Kelley; Guohua Pan; Austin L. Gurney; Abraham M. de Vos; Melissa A. Starovasnik

The proinflammatory cytokine interleukin 17 (IL‐17) is the founding member of a family of secreted proteins that elicit potent cellular responses. We report a novel human IL‐17 homolog, IL‐17F, and show that it is expressed by activated T cells, can stimulate production of other cytokines such as IL‐6, IL‐8 and granulocyte colony‐stimulating factor, and can regulate cartilage matrix turnover. Unexpectedly, the crystal structure of IL‐17F reveals that IL‐17 family members adopt a monomer fold typical of cystine knot growth factors, despite lacking the disulfide responsible for defining the canonical ‘knot’ structure. IL‐17F dimerizes in a parallel manner like neurotrophins, and features an unusually large cavity on its surface. Remarkably, this cavity is located in precisely the same position where nerve growth factor binds its high affinity receptor, TrkA, suggesting further parallels between IL‐17s and neurotrophins with respect to receptor recognition.


Cell | 2000

ICEBERG: A Novel Inhibitor of Interleukin-1β Generation

Eric W Humke; Stephanie Shriver; Melissa A. Starovasnik; Wayne J. Fairbrother; Vishva M. Dixit

Abstract ProIL-1β is a proinflammatory cytokine that is proteolytically processed to its active form by caspase-1. Upon receipt of a proinflammatory stimulus, an upstream adaptor, RIP2, binds and oligomerizes caspase-1 zymogen, promoting its autoactivation. ICEBERG is a novel protein that inhibits generation of IL-1β by interacting with caspase-1 and preventing its association with RIP2. ICEBERG is induced by proinflammatory stimuli, suggesting that it may be part of a negative feedback loop. Consistent with this, enforced retroviral expression of ICEBERG inhibits lipopolysaccharide-induced IL-1β generation. The structure of ICEBERG reveals it to be a member of the death-domain-fold superfamily. The distribution of surface charge is complementary to the homologous prodomain of caspase-1, suggesting that charge–charge interactions mediate binding of ICEBERG to the prodomain of caspase-1.


Structure | 1998

Solution structure of the heparin-binding domain of vascular endothelial growth factor

Wayne J. Fairbrother; Mark Champe; Hans W. Christinger; Bruce A. Keyt; Melissa A. Starovasnik

BACKGROUNDnVascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and is a potent angiogenic and vascular permeabilizing factor. VEGF is also an important mediator of pathological angiogenesis associated with cancer, rheumatoid arthritis and proliferative retinopathy. The binding of VEGF to its two known receptors, KDR and Flt-1, is modulated by cell-surface-associated heparin-like glycosaminoglycans and exogenous heparin or heparan sulfate. Heparin binding to VEGF165, the most abundantly expressed isoform of VEGF, has been localized to the carboxy-terminal 55 residues; plasmin cleavage of VEGF165 yields a homodimeric 110-residue amino-terminal receptor-binding domain (VEGF110) and two 55-residue carboxy-terminal heparin-binding fragments. The endothelial cell mitogenic potency of VEGF110 is decreased significantly relative to VEGF165, indicating that the heparin-binding domains are critical for stimulating endothelial cell proliferation.nnnRESULTSnThe solution structure of the 55-residue heparin-binding domain of VEGF165 has been solved using data from two-dimensional homonuclear and three-dimensional heteronuclear NMR spectroscopy. The structure has two subdomains, each containing two disulfide bridges and a short two-stranded antiparallel beta sheet; the carboxy-terminal subdomain also contains a short alpha helix. Hydrophobic interactions are limited to sidechains packing against the disulfide bridges.nnnCONCLUSIONSnThe heparin-binding domain of VEGF has no significant sequence or structural similarity to any known proteins and thus represents a novel heparin-binding domain. Most of the positively charged amino acid sidechains are localized on one side of the carboxy-terminal subdomain or on an adjacent disordered loop in the amino-terminal subdomain. The observed distribution of surface charges suggests that these residues constitute a heparin interaction site.


Journal of Biological Chemistry | 2005

Structures of APRIL-Receptor Complexes LIKE BCMA, TACI EMPLOYS ONLY A SINGLE CYSTEINE-RICH DOMAIN FOR HIGH AFFINITY LIGAND BINDING

Sarah G. Hymowitz; Darshana Ramesh Patel; Heidi J.A. Wallweber; Steven T. Runyon; Minhong Yan; JianPing Yin; Stephanie Shriver; Nathaniel C. Gordon; Borlan Pan; Nicholas J. Skelton; Robert F. Kelley; Melissa A. Starovasnik

TACI is a member of the tumor necrosis factor receptor superfamily and serves as a key regulator of B cell function. TACI binds two ligands, APRIL and BAFF, with high affinity and contains two cysteine-rich domains (CRDs) in its extracellular region; in contrast, BCMA and BR3, the other known high affinity receptors for APRIL and BAFF, respectively, contain only a single or partial CRD. However, another form of TACI exists wherein the N-terminal CRD is removed by alternative splicing. We find that this shorter form is capable of ligand-induced cell signaling and that the second CRD alone (TACI_d2) contains full affinity for both ligands. Furthermore, we report the solution structure and alanine-scanning mutagenesis of TACI_d2 along with co-crystal structures of APRIL·TACI_d2 and APRIL·BCMA complexes that together reveal the mechanism by which TACI engages high affinity ligand binding through a single CRD, and we highlight sources of ligand-receptor specificity within the APRIL/BAFF system.


Protein Science | 2001

The PYRIN domain: A member of the death domain-fold superfamily

Wayne J. Fairbrother; Nathaniel C. Gordon; Eric W Humke; Karen O'Rourke; Melissa A. Starovasnik; JianPing Yin; Vishva M. Dixit

PYRIN domains were identified recently as putative protein–protein interaction domains at the N‐termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The ∼95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three‐dimensional structure. Using secondary structure prediction and potential‐based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six‐helix bundle death domain‐fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain‐fold superfamily are well established mediators of protein–protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf‐1/Ced‐4 family of proteins, was constructed using the three‐dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf‐1 and caspase‐9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain‐fold provides experimental support for the structure prediction.


Science | 2015

Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist.

Shivani Ahuja; Susmith Mukund; Lunbin Deng; Kuldip Khakh; Elaine Chang; Hoangdung Ho; Stephanie Shriver; Clint Young; Sophia Lin; J. P. Johnson; Ping Wu; Jun Li; Mary Coons; Christine Tam; Bobby Brillantes; Honorio Sampang; Kyle Mortara; Krista K. Bowman; Kevin R. Clark; Alberto Estevez; Zhiwei Xie; Henry Verschoof; Michael Edward Grimwood; Christoph Martin Dehnhardt; Jean-Christophe Andrez; Thilo Focken; Daniel P. Sutherlin; Brian Safina; Melissa A. Starovasnik; Daniel F. Ortwine

A channel involved in pain perception Voltage-gated sodium (Nav) channels propagate electrical signals in muscle cells and neurons. In humans, Nav1.7 plays a key role in pain perception. It is challenging to target a particular Nav isoform; however, arylsulfonamide antagonists selective for Nav1.7 have been reported recently. Ahuja et al. characterized the binding of these small molecules to human Nav channels. To further investigate the mechanism, they engineered a bacterial Nav channel to contain features of the Nav1.7 voltage-sensing domain that is targeted by the antagonist and determined the crystal structure of the chimera bound to an inhibitor. The structure gives insight into the mechanism of voltage sensing and will enable the design of more-selective Nav channel antagonists. Science, this issue p. 10.1126/science.aac5464 Structural studies give insight into how a human sodium channel involved in pain perception can be selectively inhibited. INTRODUCTION Voltage-gated sodium (Nav) channels open and close ion-selective pores in response to changes in membrane potential, and this gating underlies the generation of action potentials. Nav channels are large membrane proteins that contain four peripheral voltage-sensor domains (VSD1–4) that influence the functional state of the central ion-conducting pore. Mutations within the nine human Nav channel isoforms are associated with migraine (Nav1.1), epilepsy (Nav1.1–Nav1.3, Nav1.6), pain (Nav1.7–Nav1.9), cardiac (Nav1.5), and muscle paralysis (Nav1.4) syndromes. Accordingly, Nav channel blockers are used for the treatment of many neurological and cardiovascular disorders. These drugs bind within the central pore domain and generally lack isoform selectivity owing to the high sequence conservation found among Nav channels, limiting their therapeutic utility. In this study, we focused on a recently identified class of isoform-selective small-molecule antagonists that target a unique binding site on the fourth voltage-sensor domain, VSD4. Here we report the structural determination of such small-molecule aryl sulfonamide antagonists in complex with human Nav1.7 VSD4. Our studies demonstrate how this important new class of gating modifier engages VSD4 to inhibit Nav channel activity through a “voltage-sensor trapping” mechanism. RATIONALE For structural studies, we devised a novel protein-engineering strategy that overcomes the technical complexities of producing full-length human Nav channels. Exploiting the evolutionary relationship between human and bacterial Nav channels, we fused portions of Nav1.7 VSD4 onto the bacterial channel NavAb. Using ligand-binding assays and alanine-scanning mutagenesis, we demonstrated that the antagonist binding site present in the human Nav1.7 channel is preserved within this human VSD4-NavAb chimeric channel. This chimeric construct allowed purification, crystallization, and structure determination of potent aryl sulfonamide antagonists in complex with the human Nav1.7 VSD4 binding site. RESULTS Functional studies using patch-clamp electrophysiology revealed that aryl sulfonamide inhibitors bind with high affinity to an isoform-selective and extracellularly accessible site on VSD4. These inhibitors show a high level of state dependence, potently blocking human Nav1.7 only when VSD4 is in its activated conformation. Our crystallographic studies revealed that the anionic warhead from the aryl sulfonamide inhibitors directly engages the fourth gating charge residue (R4) on the voltage-sensing S4 helix, effectively trapping VSD4 in its activated state. Isoform selectivity is achieved by inhibitor interactions with nonconserved residues found on the S2 and S3 transmembrane helices. The drug receptor site is partially submerged within the membrane bilayer, and a peripherally bound phospholipid was observed to form a tripartite complex with the antagonist and channel. CONCLUSION A new crystallization strategy has enabled the structural determination of VSD4 from human Nav1.7 in complex with potent, state-dependent, isoform-selective small-molecule antagonists. Mechanistically, inhibitor binding traps VSD4 in an activated conformation, which stabilizes a nonconductive state of the channel, and likely prevents recovery from inactivation. Unique phospholipid interactions and an exposed inhibitor binding site expand the importance of the membrane bilayer in ion channel biology. We anticipate that these structures will enable drug design efforts aimed at other voltage-gated ion channels and may accelerate the development of new treatments for pain that selectively target Nav1.7. Drug binding sites in sodium channels. (Left) Top-view model of human Nav1.7. When open, sodium passes through the channel. Blocking drugs lacking isoform selectivity bind to a conserved site within the central pore. Isoform-selective inhibitors bind to a distinct site on VSD4. (Right) Strategy for Nav1.7 crystallography. Portions of Nav1.7 VSD4 were grafted onto a tetrameric channel (NavAb) and crystallized. (Inset) Side view of aryl sulfonamide binding site with the S4 helix and arginine gating charges highlighted pink. Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.


Structure | 2012

Structural Basis for the Dual Recognition of Helical Cytokines IL-34 and CSF-1 by CSF-1R.

Xiaolei Ma; Wei Yu Lin; Yongmei Chen; Scott Stawicki; Kiran Mukhyala; Yan Wu; Flavius Martin; J. Fernando Bazan; Melissa A. Starovasnik

Lacking any discernible sequence similarity, interleukin-34 (IL-34) and colony stimulating factor 1 (CSF-1) signal through a common receptor CSF-1R on cells of mononuclear phagocyte lineage. Here, the crystal structure of dimeric IL-34 reveals a helical cytokine fold homologous to CSF-1, and we further show that the complex architecture of IL-34 bound to the N-terminal immunoglobulin domains of CSF-1R is similar to the CSF-1/CSF-1R assembly. However, unique conformational adaptations in the receptor domain geometry and intermolecular interface explain the cross-reactivity of CSF-1R for two such distantly related ligands. The docking adaptations of the IL-34 and CSF-1 quaternary complexes, when compared to the stem cell factor assembly, draw a common evolutionary theme for transmembrane signaling. In addition, the structure of IL-34 engaged by a Fab fragment reveals the mechanism of a neutralizing antibody that can help deconvolute IL-34 from CSF-1 biology, with implications for therapeutic intervention in diseases with myeloid pathogenic mechanisms.


Nature Structural & Molecular Biology | 2012

Phosphorylation-dependent activity of the deubiquitinase DUBA

Oscar W. Huang; Xiaolei Ma; JianPing Yin; Jeremy Flinders; Till Maurer; Nobuhiko Kayagaki; Qui Phung; Ivan Bosanac; David Arnott; Vishva M. Dixit; Sarah G. Hymowitz; Melissa A. Starovasnik; Andrea G. Cochran

Addition and removal of ubiquitin or ubiquitin chains to and from proteins is a tightly regulated process that contributes to cellular signaling and protein stability. Here we show that phosphorylation of the human deubiquitinase DUBA (OTUD5) at a single residue, Ser177, is both necessary and sufficient to activate the enzyme. The crystal structure of the ubiquitin aldehyde adduct of active DUBA reveals a marked cooperation between phosphorylation and substrate binding. An intricate web of interactions involving the phosphate and the C-terminal tail of ubiquitin cause DUBA to fold around its substrate, revealing why phosphorylation is essential for deubiquitinase activity. Phosphoactivation of DUBA represents an unprecedented mode of protease regulation and a clear link between two major cellular signal transduction systems: phosphorylation and ubiquitin modification.


Structure | 2012

The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site.

Gladys de Leon-Boenig; Krista K. Bowman; Jianwen A. Feng; Terry D. Crawford; Christine Everett; Yvonne Franke; Angela Oh; Mark S. Stanley; Steven Staben; Melissa A. Starovasnik; Heidi J.A. Wallweber; Jiansheng Wu; Lawren C. Wu; Adam R. Johnson; Sarah G. Hymowitz

The NF-κB inducing kinase (NIK) regulates the non-canonical NF-κB pathway downstream of important clinical targets including BAFF, RANKL, and LTβ. Despite numerous genetic studies associating dysregulation of this pathway with autoimmune diseases and hematological cancers, detailed molecular characterization of this central signaling node has been lacking. We undertook a systematic cloning and expression effort to generate soluble, well-behaved proteins encompassing the kinase domains of human and murine NIK. Structures of the apo NIK kinase domain from both species reveal an active-like conformation in the absence of phosphorylation. ATP consumption and peptide phosphorylation assays confirm that phosphorylation of NIK does not increase enzymatic activity. Structures of murine NIK bound to inhibitors possessing two different chemotypes reveal conformational flexibility in the gatekeeper residue controlling access to a hydrophobic pocket. Finally, a single amino acid difference affects the ability of some inhibitors to bind murine and human NIK with the same affinity.

Collaboration


Dive into the Melissa A. Starovasnik's collaboration.

Researchain Logo
Decentralizing Knowledge