Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dhira Rani Saha is active.

Publication


Featured researches published by Dhira Rani Saha.


Gut Pathogens | 2010

Emerging trends in the etiology of enteric pathogens as evidenced from an active surveillance of hospitalized diarrhoeal patients in Kolkata, India

G. B. Nair; Thandavarayan Ramamurthy; Bhattacharya Mk; Triveni Krishnan; Sandipan Ganguly; Dhira Rani Saha; Krishnan Rajendran; Byomkesh Manna; Mrinmoy Ghosh; Keinosuke Okamoto; Yoshifumi Takeda

BackgroundThis study was conducted to determine the etiology of diarrhoea in a hospital setting in Kolkata. Active surveillance was conducted for 2 years on two random days per week by enrolling every fifth diarrhoeal patient admitted to the Infectious Diseases and Beliaghata General Hospital in Kolkata.ResultsMost of the patients (76.1%) had acute watery diarrhoea in association with vomiting (77.7%) and some dehydration (92%). Vibrio cholerae O1, Rotavirus and Giardia lamblia were the important causes of diarrhoea. Among Shigella spp, S. flexneri 2a and 3a serotypes were most predominantly isolated. Enteric viruses, EPEC and EAEC were common in children <5 year age group. Atypical EPEC was comparatively higher than the typical EPEC. Multidrug resistance was common among V. cholerae O1 and Shigella spp including tetracycline and ciprofloxacin. Polymicrobial infections were common in all age groups and 27.9% of the diarrhoea patients had no potential pathogen.ConclusionsIncrease in V. cholerae O1 infection among <2 years age group, resistance of V. cholerae O1 to tetracycline, rise of untypable S. flexnerii, higher proportion of atypical EPEC and G. lamblia and polymicrobial etiology are some of the emerging trends observed in this diarrhoeal disease surveillance.


Cellular Microbiology | 2008

Bacterial exotoxins downregulate cathelicidin (hCAP‐18/LL‐37) and human β‐defensin 1 (HBD‐1) expression in the intestinal epithelial cells

Krishnendu Chakraborty; Shubhamoy Ghosh; Hemanta Koley; Asish K. Mukhopadhyay; Thandavarayan Ramamurthy; Dhira Rani Saha; Debashis Mukhopadhyay; Swasti Roychowdhury; Takashi Hamabata; Yoshifumi Takeda; Santasabuj Das

Cathelicidin (hCAP‐18/LL‐37) and β‐defensin 1 (HBD‐1) are human antimicrobial peptides (AMPs) with high basal expression levels, which form the first line of host defence against infections over the epithelial surfaces. The antimicrobial functions owe to their direct microbicidal effects as well as the immunomodulatory role. Pathogenic microorganisms have developed multiple modalities including transcriptional repression to combat this arm of the host immune response. The precise mechanisms and the pathogen‐derived molecules responsible for transcriptional downregulation remain unknown. Here, we have shown that enteric pathogens suppress LL‐37 and HBD‐1 expression in the intestinal epithelial cells (IECs) with Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) exerting the most dramatic effects. Cholera toxin (CT) and labile toxin (LT), the major virulence proteins of V. cholerae and ETEC, respectively, are predominantly responsible for these effects, both in vitro and in vivo. CT transcriptionally downregulates the AMPs by activating several intracellular signalling pathways involving protein kinase A (PKA), ERK MAPKinase and Cox‐2 downstream of cAMP accumulation and inducible cAMP early repressor (ICER) may mediate this role of CT, at least in part. This is the first report to show transcriptional repression of the AMPs through the activation of cellular signal transduction pathways by well‐known virulence proteins of pathogenic microorganisms.


Infection and Immunity | 2008

Intestinal Adherence of Vibrio cholerae Involves a Coordinated Interaction between Colonization Factor GbpA and Mucin

Rudra Bhowmick; Abhisek Ghosal; Bhabatosh Das; Hemanta Koley; Dhira Rani Saha; Sandipan Ganguly; Ranjan K. Nandy; Rupak K. Bhadra; Nabendu Sekhar Chatterjee

ABSTRACT The chitin-binding protein GbpA of Vibrio cholerae has been recently described as a common adherence factor for chitin and intestinal surface. Using an isogenic in-frame gbpA deletion mutant, we first show that V. cholerae O1 El Tor interacts with mouse intestinal mucus quickly, using GbpA in a specific manner. The gbpA mutant strain showed a significant decrease in intestinal adherence, leading to less colonization and fluid accumulation in a mouse in vivo model. Purified recombinant GbpA (rGbpA) specifically bound to N-acetyl-d-glucosamine residues of intestinal mucin in a dose-dependent, saturable manner with a dissociation constant of 11.2 μM. Histopathology results from infected mouse intestine indicated that GbpA binding resulted in a time-dependent increase in mucus secretion. We found that rGbpA increased the production of intestinal secretory mucins (MUC2, MUC3, and MUC5AC) in HT-29 cells through upregulation of corresponding genes. The upregulation of MUC2 and MUC5AC genes was dependent on NF-κB nuclear translocation. Interestingly, mucin could also increase GbpA expression in V. cholerae in a dose-dependent manner. Thus, we propose that there is a coordinated interaction between GbpA and mucin to upregulate each other in a cooperative manner, leading to increased levels of expression of both of these interactive factors and ultimately allowing successful intestinal colonization and pathogenesis by V. cholerae.


Journal of Clinical Microbiology | 2003

Virulence Genes and Neutral DNA Markers of Helicobacter pylori Isolates from Different Ethnic Communities of West Bengal, India

Simanti Datta; Santanu Chattopadhyay; G. Balakrish Nair; Asish K. Mukhopadhyay; Jabaranjan Hembram; Douglas E. Berg; Dhira Rani Saha; Asis Khan; Amal Santra; Swapan Bhattacharya; Abhijit Chowdhury

ABSTRACT Virulence-associated genes and neutral DNA markers of Helicobacter pylori strains from the Santhal and Oroan ethnic minorities of West Bengal, India, were studied. These people have traditionally been quite separate from other Indians and differ culturally, genetically, and linguistically from mainstream Bengalis, whose H. pylori strains have been characterized previously. H. pylori was found in each of 49 study participants, although none had peptic ulcer disease, and was cultured from 31 of them. All strains carried the cag pathogenicity island and potentially toxigenic s1 alleles of vacuolating cytotoxin gene (vacA) and were resistant to at least 8 μg of metronidazole per ml. DNA sequence motifs in vacA mid-region m1 alleles, cagA, and an informative insertion or deletion motif next to cagA from these strains were similar to those of strains from ethnic Bengalis. Three mobile elements, IS605, IS607, and ISHp608, were present in 29, 19, and 10%, respectively, of Santhal and Oroan strains, which is similar to their prevalence in Bengali H. pylori. Thus, there is no evidence that the gene pools of H. pylori of these ethnic minorities differ from those of Bengalis from the same region. This relatedness of strains from persons of different ethnicities bears on our understanding of H. pylori transmission between communities and genome evolution.


PLOS ONE | 2011

Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice.

Parag Kundu; Ronita De; Ipsita Pal; Asish K. Mukhopadhyay; Dhira Rani Saha; Snehasikta Swarnakar

Current therapy-regimens against Helicobacter pylori (Hp) infections have considerable failure rates and adverse side effects that urge the quest for an effective alternative therapy. We have shown that curcumin is capable of eradicating Hp-infection in mice. Here we examine the mechanism by which curcumin protects Hp infection in cultured cells and mice. Since, MMP-3 and -9 are inflammatory molecules associated to the pathogenesis of Hp-infection, we investigated the role of curcumin on inflammatory MMPs as well as proinflammatory molecules. Curcumin dose dependently suppressed MMP-3 and -9 expression in Hp infected human gastric epithelial (AGS) cells. Consistently, Hp-eradication by curcumin-therapy involved significant downregulation of MMP-3 and -9 activities and expression in both cytotoxic associated gene (cag)+ve and cag -ve Hp-infected mouse gastric tissues. Moreover, we demonstrate that the conventional triple therapy (TT) alleviated MMP-3 and -9 activities less efficiently than curcumin and curcumins action on MMPs was linked to decreased pro-inflammatory molecules and activator protein-1 activation in Hp-infected gastric tissues. Although both curcumin and TT were associated with MMP-3 and -9 downregulation during Hp-eradication, but unlike TT, curcumin enhanced peroxisome proliferator-activated receptor-γ and inhibitor of kappa B-α. These data indicate that curcumin-mediated healing of Hp-infection involves regulation of MMP-3 and -9 activities.


PLOS Neglected Tropical Diseases | 2014

Trends in the epidemiology of pandemic and non-pandemic strains of Vibrio parahaemolyticus isolated from diarrheal patients in Kolkata, India.

Gururaja P. Pazhani; Sushanta K. Bhowmik; Santanu Ghosh; Sucharita Guin; Sanjucta Dutta; Krishnan Rajendran; Dhira Rani Saha; Ranjan K. Nandy; Bhattacharya Mk; Asish K. Mukhopadhyay; Thandavarayan Ramamurthy

A total of 178 strains of V. parahaemolyticus isolated from 13,607 acute diarrheal patients admitted in the Infectious Diseases Hospital, Kolkata has been examined for serovar prevalence, antimicrobial susceptibility and genetic traits with reference to virulence, and clonal lineages. Clinical symptoms and stool characteristics of V. parahaemolyticus infected patients were analyzed for their specific traits. The frequency of pandemic strains was 68%, as confirmed by group-specific PCR (GS-PCR). However, the prevalence of non-pandemic strains was comparatively low (32%). Serovars O3:K6 (19.7%), O1:K25 (18.5%), O1:KUT (11.2%) were more commonly found and other serovars such as O3:KUT (6.7%), O4:K8 (6.7%), and O2:K3 (4.5%) were newly detected in this region. The virulence gene tdh was most frequently detected in GS-PCR positive strains. There was no association between strain features and stool characteristics or clinical outcomes with reference to serovar, pandemic/non-pandemic or virulence profiles. Ampicillin and streptomycin resistance was constant throughout the study period and the MIC of ampicillin among selected strains ranged from 24 to >256 µg/ml. Susceptibility of these strains to ampicillin increased several fold in the presence of carbonyl cyanide-m-chlorophenyldrazone. The newly reported ESBL encoding gene from VPA0477 was found in all the strains, including the susceptible ones for ampicillin. However, none of the strains exhibited the β-lactamase as a phenotypic marker. In the analysis of pulsed-field gel electrophoresis (PFGE), the pandemic strains formed two different clades, with one containing the newly emerged pandemic strains in this region.


Infection and Immunity | 2006

Enterotoxigenicity of mature 45-kilodalton and processed 35-kilodalton forms of hemagglutinin protease purified from a cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain.

Amit Ghosh; Dhira Rani Saha; K. M. Hoque; M. Asakuna; Shinji Yamasaki; Hemanta Koley; S. S. Das; Manoj K. Chakrabarti; Amit Pal

ABSTRACT Cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain PL-21 is the etiologic agent of cholera-like syndrome. Hemagglutinin protease (HAP) is one of the major secretory proteins of PL-21. The mature 45-kDa and processed 35-kDa forms of HAP were purified in the presence and absence of EDTA from culture supernatants of PL-21. Enterotoxigenicities of both forms of HAP were tested in rabbit ileal loop (RIL), Ussing chamber, and tissue culture assays. The 35-kDa HAP showed hemorrhagic fluid response in a dose-dependent manner in the RIL assay. Histopathological examination of 20 μg of purified protease-treated rabbit ileum showed the presence of erythrocytes and neutrophils in the upper part of the villous lamina propria. Treatment with 40 μg of protease resulted in gross damage of the villous epithelium with inflammation, hemorrhage, and necrosis. The 35-kDa form of HAP, when added to the lumenal surface of rat ileum loaded in an Ussing chamber, showed a decrease in the intestinal short-circuit current and a cell rounding effect on HeLa cells. The mature 45-kDa form of HAP showed an increase in intestinal short-circuit current in an Ussing chamber and a cell distending effect on HeLa cells. These results show that HAP may play a role in the pathogenesis of PL-21.


PLOS ONE | 2010

Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model

Aurelia Syngkon; Sridhar Elluri; Hemanta Koley; Pramod Kumar Rompikuntal; Dhira Rani Saha; Manoj K. Chakrabarti; Rupak K. Bhadra; Sun Nyunt Wai; Amit Pal

Background Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL). Methodology/Principal Findings We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/−0.3 n = 3), CHA6.8 (FA ratio 1.08+/−0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/−0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/−0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/−0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/−0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure. Conclusion Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model.


Fems Immunology and Medical Microbiology | 2012

Outer membrane vesicles of Shigella boydii type 4 induce passive immunity in neonatal mice

Soma Mitra; Soumik Barman; Dhrubajyoti Nag; Ritam Sinha; Dhira Rani Saha; Hemanta Koley

Like most other Gram-negative bacteria, Shigella releases outer membrane vesicles (OMVs) into the surrounding environment during growth. In this study, we have exploited OMVs of Shigella as a protective immunogen in a mice model against Shigellosis. Distinctive vesicle secretion was noticed from different Shigella strains. Among them, Shigella boydii type 4 (BCH612) was secreting relatively higher amounts. We immunized female adult mice orally with 32 μg of purified Shigella boydii type 4 (BCH612) OMVs four times at 1-week intervals. Antibodies against these vesicles were detected in immunized sera until 120 days, indicating a persistent immune response. To observe whether the passive immunity had been transferred to the neonates, the immunized female mice were mated and the offspring were challenged orally, with wild-type homologous and heterologous Shigella strains. All offspring of immunized mothers survived the challenge with homologous strain BCH612 and up to 81% protective efficacy was noted against heterologous strains Shigella dysenteriae 1, Shigella flexneri 2a, Shigella flexneri 3a, Shigella flexneri 6 and Shigella sonnei. Our results exhibited for the first time that oral immunization of adult female mice with purified OMVs of Shigella, without any adjuvant, conferred passive protection to their offspring against shigellosis. These findings will contribute to the future development of a potential non-living vaccine candidate against shigellosis.


International Immunopharmacology | 2016

Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response.

Bhupesh Kumar Thakur; Piu Saha; George Banik; Dhira Rani Saha; Sunita Grover; Virender Kumar Batish; Santasabuj Das

Inflammatory bowel disease (IBD) is a group of inflammatory disorders of the intestine caused by dysregulated T-cell mediated immune response against commensal microflora. Probiotics are reported as therapeutically effective against IBD. However, variable efficacy of the live probiotic strains, difference in survival and persistence in the gut between the strains and the lack of insight into the mechanisms of probiotic action limit optimal therapeutic efficacy. Our aims were to evaluate the lactobacillus strains isolated from the North Indian population for the generation of regulatory cells and cytokines in the intestine, to study their effects on pro-inflammatory mediators in the mouse model of inflammatory bowel disease and to explore the underlying mechanisms of their actions. Among the selected lactobacillus strains, Lactobacillus casei Lbs2 (MTCC5953) significantly suppressed lipopolysaccharide-induced pro-inflammatory cytokine (TNF-alpha, IL-6) secretion. Both live and heat-killed Lbs2 polarized Th0 cells to T-regulatory (Treg) cells in vitro, increased the frequency of FoxP3(+) Treg cells in the mesenteric lymph nodes (MLNs) and alleviated macroscopic and histopathological features of colitis in probiotic-fed mice. Moreover, the levels of IL-12, TNF-alpha and IL-17A were suppressed, while IL-10 and TGF-beta levels were augmented in the colonic tissues of Lbs2-treated mice. The induced Treg (iTreg) cells secreted IL-10 and TGF-beta and exerted suppressive effects on the proliferation of effector T-cells. Adoptive transfer of iTreg cells ameliorated the disease manifestations of murine colitis and suppressed the levels of TNF-alpha and IL-17A. Finally, Lbs2 effects were mediated by Toll-like receptor 2 (TLR2) activation on the dendritic cells. This study identified live and heat-killed Lbs2 as putative therapeutic candidates against IBD and highlighted their Toll-like receptor 2-dependent immunomodulatory and regulatory function.

Collaboration


Dive into the Dhira Rani Saha's collaboration.

Top Co-Authors

Avatar

Hemanta Koley

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Asish K. Mukhopadhyay

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhattacharya Mk

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ronita De

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandipan Ganguly

Indian Council of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge