Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronita De is active.

Publication


Featured researches published by Ronita De.


Antimicrobial Agents and Chemotherapy | 2009

Antimicrobial Activity of Curcumin against Helicobacter pylori Isolates from India and during Infections in Mice

Ronita De; Parag Kundu; Snehasikta Swarnakar; T. Ramamurthy; Abhijit Chowdhury; G. Balakrish Nair; Asish K. Mukhopadhyay

ABSTRACT Treatment failure is a major cause of concern for the Helicobacter pylori-related gastroduodenal diseases like gastritis, peptic ulcer, and gastric cancer. Curcumin, diferuloylmethane from turmeric, has recently been shown to arrest H. pylori growth. The antibacterial activity of curcumin against 65 clinical isolates of H. pylori in vitro and during protection against H. pylori infection in vivo was examined. The MIC of curcumin ranges from 5 μg/ml to 50 μg/ml, showing its effectiveness in inhibiting H. pylori growth in vitro irrespective of the genetic makeup of the strains. The nucleotide sequences of the aroE genes, encoding shikimate dehydrogenase, against which curcumin seems to act as a noncompetitive inhibitor, from H. pylori strains presenting differential curcumin MICs showed that curcumin-mediated growth inhibition of Indian H. pylori strains may not be always dependent on the shikimate pathway. The antimicrobial effect of curcumin in H. pylori-infected C57BL/6 mice and its efficacy in reducing the gastric damage due to infection were examined histologically. Curcumin showed immense therapeutic potential against H. pylori infection as it was highly effective in eradication of H. pylori from infected mice as well as in restoration of H. pylori-induced gastric damage. This study provides novel insights into the therapeutic effect of curcumin against H. pylori infection, suggesting its potential as an alternative therapy, and opens the way for further studies on identification of novel antimicrobial targets of curcumin.


Alimentary Pharmacology & Therapeutics | 2005

Most Helicobacter pylori strains of Kolkata in India are resistant to metronidazole but susceptible to other drugs commonly used for eradication and ulcer therapy

Simanti Datta; Santanu Chattopadhyay; Rajashree Patra; Ronita De; T. Ramamurthy; J. Hembram; Abhijit Chowdhury; Swapan Bhattacharya; Douglas E. Berg; G. B. Nair; Asish K. Mukhopadhyay

Background : Helicobacter pylori infection is very common in India, as in other developing countries, but few data exist on the susceptibility of H. pylori to antimicrobial agents commonly used for eradication here.


PLOS ONE | 2011

Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice.

Parag Kundu; Ronita De; Ipsita Pal; Asish K. Mukhopadhyay; Dhira Rani Saha; Snehasikta Swarnakar

Current therapy-regimens against Helicobacter pylori (Hp) infections have considerable failure rates and adverse side effects that urge the quest for an effective alternative therapy. We have shown that curcumin is capable of eradicating Hp-infection in mice. Here we examine the mechanism by which curcumin protects Hp infection in cultured cells and mice. Since, MMP-3 and -9 are inflammatory molecules associated to the pathogenesis of Hp-infection, we investigated the role of curcumin on inflammatory MMPs as well as proinflammatory molecules. Curcumin dose dependently suppressed MMP-3 and -9 expression in Hp infected human gastric epithelial (AGS) cells. Consistently, Hp-eradication by curcumin-therapy involved significant downregulation of MMP-3 and -9 activities and expression in both cytotoxic associated gene (cag)+ve and cag -ve Hp-infected mouse gastric tissues. Moreover, we demonstrate that the conventional triple therapy (TT) alleviated MMP-3 and -9 activities less efficiently than curcumin and curcumins action on MMPs was linked to decreased pro-inflammatory molecules and activator protein-1 activation in Hp-infected gastric tissues. Although both curcumin and TT were associated with MMP-3 and -9 downregulation during Hp-eradication, but unlike TT, curcumin enhanced peroxisome proliferator-activated receptor-γ and inhibitor of kappa B-α. These data indicate that curcumin-mediated healing of Hp-infection involves regulation of MMP-3 and -9 activities.


PLOS ONE | 2012

Multiple Infection and Microdiversity among Helicobacter pylori Isolates in a Single Host in India

Rajashree Patra; Santanu Chattopadhyay; Ronita De; Prachetash Ghosh; Mou Ganguly; Abhijit Chowdhury; T. Ramamurthy; G. B. Nair; Asish K. Mukhopadhyay

Helicobacter pylori is one of the most diverse bacterial species that chronically infects more than 70% of Indian population. Interestingly, data showing microdiversity of the H. pylori strains within a particular gastric niche remained scarce. To understand the extent of genetic diversity among H. pylori strains within a given host, 30 patients with gastro-duodenal problems were subjected to endoscopy and from each patient 10 single colonies were isolated. Characterization of each of these 10 single colonies by DNA fingerprinting as well as genotyping of several important genetic markers viz. cagA, vacA, iceA, vapD, cag PAI empty site, IS605, RFLP and two other genetic segments within cag PAI revealed that all of the 30 patients were infected with more than one strain and sometimes strains with 5 to 6 types of genetic variants. Analyses of certain genetic loci showed the microdiversity among the colonies from single patient, which may be due to the recombination events during long-term carriage of the pathogen. These results suggest that most of the patients have acquired H. pylori due to repeated exposure to this pathogen with different genetic make-up, which may increase the possibility of super infections. Genetic exchanges between these unrelated H. pylori strains may support certain H. pylori variant to grow better in a given host than the parental strain and thereby increasing the possibility for the severity of the infection.


World Journal of Gastroenterology | 2016

Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

Avijit Sarkar; Ronita De; Asish K. Mukhopadhyay

Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake.


International Journal of Medical Microbiology | 2011

Intact cag pathogenicity island of Helicobacter pylori without disease association in Kolkata, India.

Rajashree Patra; Santanu Chattopadhyay; Ronita De; Simanti Datta; Abhijit Chowdhury; T. Ramamurthy; G. Balakrish Nair; Douglas E. Berg; Asish K. Mukhopadhyay

Several genes including the cagA in the cag pathogenicity island (cag PAI) of Helicobacter pylori are thought to be associated with the gastroduodenal diseases and hence variation in the genetic structure of the cag PAI might be responsible for different clinical outcomes. Our study was undertaken to characterize the cag PAI of H. pylori strains from duodenal ulcer (DU) patients and asymptomatic or non-ulcer dyspepsia (NUD/AV) subjects from Kolkata, India. Strains isolated from 52 individuals (30DU and 22NUD/AV) were analyzed by PCR using 83 different primers for the entire cag PAI and also by dot-blot hybridization. Unlike H. pylori strains isolated from other parts of India, 82.6% of the strains used in this study had intact cag PAI, 9.6% had partially deleted cag PAI, and 7.7% of the strains lacked the entire cag PAI. Dot-blot hybridization yielded positive signals in 100% and 93.8% of PCR-negative strains for HP0522-523 and HP0532-HP0534 genes, respectively. An intact cagA promoter region was also detected in all cagA-positive strains. Furthermore, the expression of cagA mRNA was confirmed by RT-PCR for the representative strains from both DU and NUD/AV subjects indicating the active cagA promoter regions of these strains. A total of 66.7% of Kolkata strains produced a ∼390-bp shorter amplicon than the standard strain 26695 for the HP0527 gene, homologue of virB10. However, sequence analyses confirmed that the deletion did not alter the reading frame of the gene, and mRNA transcripts were detected by RT-PCR analysis. The strains isolated from DU and NUD/AV express CagA protein and possess a functional type IV secretion system, as revealed by Western blot analyses. Interestingly, no significant differences in cag PAI genetic structure were found between DU and NUD/AV individuals suggesting that other bacterial virulence factors, host susceptibility, and environmental determinants also influence the disease outcome at least in certain geographical locations.


Gut Pathogens | 2012

Distinct repeat motifs at the C-terminal region of CagA of Helicobacter pylori strains isolated from diseased patients and asymptomatic individuals in West Bengal, India

Santanu Chattopadhyay; Rajashree Patra; Raghunath Chatterjee; Ronita De; Jawed Alam; Thandavarayan Ramamurthy; Abhijit Chowdhury; G. Balakrish Nair; Douglas E. Berg; Asish K. Mukhopadhyay

BackgroundInfection with Helicobacter pylori strains that express CagA is associated with gastritis, peptic ulcer disease, and gastric adenocarcinoma. The biological function of CagA depends on tyrosine phosphorylation by a cellular kinase. The phosphate acceptor tyrosine moiety is present within the EPIYA motif at the C-terminal region of the protein. This region is highly polymorphic due to variations in the number of EPIYA motifs and the polymorphism found in spacer regions among EPIYA motifs. The aim of this study was to analyze the polymorphism at the C-terminal end of CagA and to evaluate its association with the clinical status of the host in West Bengal, India.ResultsSeventy-seven H. pylori strains isolated from patients with various clinical statuses were used to characterize the C-ternimal polymorphic region of CagA. Our analysis showed that there is no correlation between the previously described CagA types and various disease outcomes in Indian context. Further analyses of different CagA structures revealed that the repeat units in the spacer sequences within the EPIYA motifs are actually more discrete than the previously proposed models of CagA variants.ConclusionOur analyses suggest that EPIYA motifs as well as the spacer sequence units are present as distinct insertions and deletions, which possibly have arisen from extensive recombination events. Moreover, we have identified several new CagA types, which could not be typed by the existing systems and therefore, we have proposed a new typing system. We hypothesize that a cagA gene encoding higher number EPIYA motifs may perhaps have arisen from cagA genes that encode lesser EPIYA motifs by acquisition of DNA segments through recombination events.


Journal of Bacteriology | 2012

Next-Generation Sequencing and De Novo Assembly, Genome Organization, and Comparative Genomic Analyses of the Genomes of Two Helicobacter pylori Isolates from Duodenal Ulcer Patients in India

Narender Kumar; Asish K. Mukhopadhyay; Rajashree Patra; Ronita De; Ramani Baddam; Sabiha Shaik; Jawed Alam; Suma Tiruvayipati; Niyaz Ahmed

The prevalence of different H. pylori genotypes in various geographical regions indicates region-specific adaptations during the course of evolution. Complete genomes of H. pylori from countries with high infection burdens, such as India, have not yet been described. Herein we present genome sequences of two H. pylori strains, NAB47 and NAD1, from India. In this report, we briefly mention the sequencing and finishing approaches, genome assembly with downstream statistics, and important features of the two draft genomes, including their phylogenetic status. We believe that these genome sequences and the comparative genomics emanating thereupon will help us to clearly understand the ancestry and biology of the Indian H. pylori genotypes, and this will be helpful in solving the so-called Indian enigma, by which high infection rates do not corroborate the minuscule number of serious outcomes observed, including gastric cancer.


Journal of global antimicrobial resistance | 2016

Antimicrobial susceptibility profiles of Helicobacter pylori isolated from patients in North India

Valentina Gehlot; Shweta Mahant; Asish K. Mukhopadhyay; Kunal Das; Ronita De; Premashis Kar; Rajashree Das

Helicobacter pylori-related gastroduodenal diseases are very common in India. Antibiotic resistance to commonly used antibiotics against H. pylori is increasing very rapidly. The aim of this study was to determine the antimicrobial susceptibility patterns of H. pylori strains from India against commonly used antibiotics in H. pylori treatment. Helicobacter pylori were cultured from 68 patients suffering from various gastroduodenal diseases in North India. Minimum inhibitory concentrations (MICs) to different antibiotics were determined by agar dilution. The clinical diagnosis of the 68 patients who were H. pylori culture-positive were gastro-oesophageal reflux disease (GERD) (n=23), non-erosive reflux disease (NERD) (n=22), non-ulcer dyspepsia (NUD) (n=13), antral gastritis (n=3), duodenal ulcer (n=2) and others (n=5). Of the 68 H. pylori isolates, 20 (29.4%) showed no resistance. The prevalence of drug resistance was 70.6%, including resistance to metronidazole (48.5%), furazolidone (22.1%), amoxicillin (17.6%), tetracycline (16.2%) and clarithromycin (11.8%). Dual and multiple drug resistance were found in 26.5% and 8.8% of cases, respectively. In conclusion, more than two-thirds of the isolated H. pylori strains showed resistance to at least one of the antibiotics for H. pylori treatment. Metronidazole resistance was most prevalent amongst the isolates tested. Emergence of dual and multidrug resistance is of great concern and there is an urgent need for regular antibiotic resistance surveillance studies. Amoxicillin- and clarithromycin-based anti-H. pylori regimens commonly prescribed for triple therapy in India show least resistance and hence are appropriate for anti-H. pylori management in India.


International Journal of Biological Macromolecules | 2016

Floating mucoadhesive alginate beads of amoxicillin trihydrate: A facile approach for H. pylori eradication.

Sanjoy Kumar Dey; Pintu Kumar De; Arnab De; Souvik Ojha; Ronita De; Asish K. Mukhopadhyay; Amalesh Samanta

This study investigates the design of sunflower oil entrapped floating and mucoadhesive beads of amoxicillin trihydrate using sodium alginate and hydroxypropyl methylcellulose as matrix polymers and chitosan as coating polymer to localize the antibiotic at the stomach site against Helicobacter pylori. Beads prepared by ionotropic gellation technique were evaluated for different physicochemical, in-vitro and in-vivo properties. Beads of all batches were floated for >24h with a maximum lag time of 46.3±3.2s. Scanning electron microscopy revealed that the beads were spherical in shape with few oil filled channels distributed throughout the surfaces and small pocket structures inside the matrix confirming oil entrapment. Prepared beads showed good mucoadhesiveness of 75.7±3.0% to 85.0±5.5%. The drug release profile was best fitted to Higuchi model with non fickian driven mechanism. The optimized batch showed 100% Helicobacter pylori growth inhibition in 15h in in-vitro culture. Furthermore, X-ray study in rabbit stomach confirmed the gastric retention of optimized formulation. The results exhibited that formulated beads may be preferred to localize the antibiotic in the gastric region to allow more availability of antibiotic at gastric mucus layer acting on Helicobacter pylori, thereby improving the therapeutic efficacy.

Collaboration


Dive into the Ronita De's collaboration.

Top Co-Authors

Avatar

Asish K. Mukhopadhyay

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Rajashree Patra

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jawed Alam

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mou Ganguly

University of Calcutta

View shared research outputs
Top Co-Authors

Avatar

Dhira Rani Saha

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Parag Kundu

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Snehasikta Swarnakar

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge