Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Bahia is active.

Publication


Featured researches published by Diana Bahia.


DNA Research | 2013

The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

Fernando Real; Ramon Vidal; Marcelo Falsarella Carazzolle; Jorge Maurício Costa Mondego; Gustavo G.L. Costa; Roberto H. Herai; Martin Würtele; Lucas Miguel de Carvalho; Renata C. Ferreira; Renato A. Mortara; Clara Lúcia Barbiéri; Piotr A. Mieczkowski; José Franco da Silveira; Marcelo R. S. Briones; Gonçalo Amarante Guimarães Pereira; Diana Bahia

We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.


PLOS Neglected Tropical Diseases | 2014

Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli.

Patrícia Hermes Stoco; Glauber Wagner; Carlos Talavera-López; Alexandra Lehmkuhl Gerber; Arnaldo Zaha; Claudia E. Thompson; Daniella Castanheira Bartholomeu; Débora Denardin Lückemeyer; Diana Bahia; Elgion L. S. Loreto; Elisa Beatriz Prestes; Fabio Mitsuo Lima; Gabriela F. Rodrigues-Luiz; Gustavo Adolfo Vallejo; José Franco da Silveira Filho; Sergio Schenkman; Karina Mariante Monteiro; Kevin M. Tyler; Luiz Gonzaga Paula de Almeida; Mauro Freitas Ortiz; Miguel Angel Chiurillo; Milene H. de Moraes; Oberdan de Lima Cunha; Rondon Mendonça-Neto; Rosane Silva; Santuza M. R. Teixeira; Silvane M.F. Murta; Thaís Cristine Marques Sincero; Tiago Antônio de Oliveira Mendes; Turán P. Ürményi

Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.


PLOS ONE | 2012

Structural basis of the interaction of a Trypanosoma cruzi surface molecule implicated in oral infection with host cells and gastric mucin.

Cristian Cortez; Nobuko Yoshida; Diana Bahia; Tiago J. P. Sobreira

Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi, which causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal β-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the α-helix. Located downstream and close to the α-helix was the gp82 gastric mucin binding site, which plays a central role in oral T. cruzi infection. The sequences equivalent to Tc85-11 laminin-binding sites, which have been associated with the parasite ability to overcome extracellular matrices and basal laminae, was poorly conserved in gp82, compatible with its reduced capacity to bind laminin. Our study indicates that gp82 is structurally suited for MT to initiate infection by the oral route, whereas Tc85-11, with its affinity for laminin, would facilitate the parasite dissemination through diverse organs and tissues.


Parasitology | 2006

The distribution of motor proteins in the muscles and flame cells of the Schistosoma mansoni miracidium and primary sporocyst

Diana Bahia; Lívia Avelar; F. Vigorosi; D. Cioli; Guilherme Oliveira; Renato A. Mortara

Schistosoma mansoni eggs, miracidia and primary sporocysts were labelled with phalloidin-rhodamine to visualize filamentous actin structures. Analysis of these forms by confocal fluorescence microscopy revealed the presence of previously well-defined circular and longitudinal muscle layers. Besides these muscular layers that sustain and provide motility to these parasite forms, we found in these 3 consecutive developmental stages of the parasite previously unidentified actin-rich tubular structures. In the 3 forms, 4 actin-rich tubules could be observed by optical sectioning underneath the well-developed muscle layers. The tubules appear in pairs, transversal to the length of the parasite, and located towards the extremities. By using an anti-flame cell specific antibody we confirmed that the tubules co-localize with flame cells and also determined that the tubule core is filled with microtubules. The additional presence of myosin in these tubules strongly suggests that they are contractile structures.


Frontiers in Microbiology | 2016

The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids

Mercedes Soares-Silva; Flavia F. Diniz; Gabriela N. Gomes; Diana Bahia

Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.


PLOS ONE | 2012

Trypanosoma cruzi: Role of δ-Amastin on Extracellular Amastigote Cell Invasion and Differentiation

Mário Costa Cruz; Normanda Souza-Melo; Claudio Vieira da Silva; Wanderson D. DaRocha; Diana Bahia; Patrícia R. Araújo; S.M.R. Teixeira; Renato A. Mortara

Trypanosoma cruzi is a protozoan parasite that comprises different phylogenetic groups and is the causative agent of Chagas’ disease. Different T. cruzi strains present differences in infectivity in in vitro and in vivo experimental models, which are likely related to the expression of different virulence factors. Amastin is a surface glycoprotein abundantly expressed on the intracellular mammalian amastigote form of the parasite. In this study, we showed that a highly infective strain (G strain) of extracellular amastigote (EA) invasive forms expressed reduced RNA levels of amastin compared to a less infective strain (CL). The treatment of HeLa cells with recombinant δ-amastin reduced infectivity of EA forms. However, the ectopic expression of δ-amastin accelerated amastigote differentiation into trypomastigotes. Corroborating the virulence behavior in association with amastin expression, the EAs overexpressing amastin were precociously and robustly observed in the liver of susceptible mouse strains (A/JUnib), whereas parasitemia was never detected in in vivo assays. This is the first report on the regulatory role of amastin in the course of both in vitro and in vivo T. cruzi infection.


Frontiers in Microbiology | 2016

Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

Renata Watanabe Costa; José Franco da Silveira; Diana Bahia

Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.


Memorias Do Instituto Oswaldo Cruz | 2006

Protein tyrosine kinases in Schistosoma mansoni

Diana Bahia; Luiza F. Andrade; Fernanda Ludolf; Renato A. Mortara; Guilherme Oliveira

The identification and description of signal transduction molecules and mechanisms are essential to elucidate Schistosoma mansoni host-parasite interactions and parasite biology. This mini review focuses on recent advancements in the study of signalling molecules and transduction mechanisms in S. mansoni, drawing special attention to the recently identified and characterised protein tyrosine kinases of S. mansoni.


Frontiers in Immunology | 2014

Cross-Protective Immunity to Leishmania amazonensis is Mediated by CD4+ and CD8+ Epitopes of Leishmania donovani Nucleoside Hydrolase Terminal Domains.

Dirlei Nico; Daniele Crespo Gomes; Marcus Vinícius Alves-Silva; Elisangêla Oliveira De Freitas; Alexandre Morrot; Diana Bahia; Marcos Palatnik; Mauricio M. Rodrigues; Clarisa B. Palatnik-de-Sousa

The nucleoside hydrolase (NH) of Leishmania donovani (NH36) is a phylogenetic marker of high homology among Leishmania parasites. In mice and dog vaccination, NH36 induces a CD4+ T cell-driven protective response against Leishmania chagasi infection directed against its C-terminal domain (F3). The C-terminal and N-terminal domain vaccines also decreased the footpad lesion caused by Leishmania amazonensis. We studied the basis of the crossed immune response using recombinant generated peptides covering the whole NH36 sequence and saponin for mice prophylaxis against L. amazonensis. The F1 (amino acids 1–103) and F3 peptide (amino acids 199–314) vaccines enhanced the IgG and IgG2a anti-NH36 antibodies to similar levels. The F3 vaccine induced the strongest DTH response, the highest proportions of NH36-specific CD4+ and CD8+ T cells after challenge and the highest expression of IFN-γ and TNF-α. The F1 vaccine, on the other hand, induced a weaker but significant DTH response and a mild enhancement of IFN-γ and TNF-α levels. The in vivo depletion with anti-CD4 or CD8 monoclonal antibodies disclosed that cross-protection against L. amazonensis infection was mediated by a CD4+ T cell response directed against the C-terminal domain (75% of reduction of the size of footpad lesion) followed by a CD8+ T cell response against the N-terminal domain of NH36 (57% of reduction of footpad lesions). Both vaccines were capable of inducing long-term cross-immunity. The amino acid sequence of NH36 showed 93% identity to the sequence of the NH A34480 of L. amazonensis, which also showed the presence of completely conserved predicted epitopes for CD4+ and CD8+ T cells in F1 domain, and of CD4+ epitopes differing by a single amino acid, in F1 and F3 domains. The identification of the C-terminal and N-terminal domains as the targets of the immune response to NH36 in the model of L. amazonensis infection represents a basis for the rationale development of a bivalent vaccine against leishmaniasis.


Frontiers in Immunology | 2012

Trypanosoma cruzi extracellular amastigotes and host cell signaling: more pieces to the puzzle

Éden Ramalho Ferreira; Alexis Bonfim-Melo; Renato A. Mortara; Diana Bahia

Among the different infective stages that Trypanosoma cruzi employs to invade cells, extracellular amastigotes (EAs) have recently gained attention by our group. This is true primarily because these amastigotes are able to infect cultured cells and animals, establishing a sustainable infective cycle. EAs are thus an excellent means of adaptation and survival for T. cruzi, whose different infective stages each utilize unique mechanisms for attachment and penetration. Here we discuss some features of host cell invasion by EAs and the associated host cell signaling events that occur as part of the process.

Collaboration


Dive into the Diana Bahia's collaboration.

Top Co-Authors

Avatar

Renato A. Mortara

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Mitsuo Lima

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

José Franco da Silveira

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Mário Costa Cruz

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Éden Ramalho Ferreira

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Claudio Vieira da Silva

Federal University of Uberlandia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priscila Oliveira

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Alexis Bonfim-Melo

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge