Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Boehm is active.

Publication


Featured researches published by Diana Boehm.


Chest | 2012

Rationale for Treatment of Metastatic Squamous Cell Carcinoma of the Lung Using Fibroblast Growth Factor Receptor Inhibitors

Friederike Göke; Alina Franzen; Roopika Menon; Diane Goltz; Robert Kirsten; Diana Boehm; Wenzel Vogel; Antonia Göke; Veit Scheble; Joerg Ellinger; Ulrich Gerigk; Falko Fend; Patrick Wagner; Andreas Schroeck; Sven Perner

BACKGROUND We previously identified amplification of the fibroblast growth factor receptor 1 gene (FGFR1) as a potential therapeutic target for small-molecule inhibitor therapy in squamous cell lung cancer (L-SCC). Currently, clinical phase I trials are underway to examine whether patients with FGFR1-amplified L-SCC benefit from a targeted therapy approach using small-molecule inhibitors. Because most patients with lung cancer present with metastatic disease, we investigated whether lymph node metastases in L-SCC share the FGFR1 amplification status of their corresponding primary tumor. METHODS The study cohort consisted of 72 patients with L-SCC, 39 with regional lymph node metastases. Tissue microarrays were constructed from formalin-fixed, paraffin-embedded tissue of the primary tumors and, where present, of the corresponding lymph node metastasis. A biotin-labeled target probe spanning the FGFR1 locus (8p11.22-23) was used to determine the FGFR1 amplification status by fluorescence in situ hybridization. RESULTS FGFR1 amplification was detected in 16% (12 of 72) of all primary L-SCCs. In metastatic tumors, 18% (seven of 39) of the lymph node metastases displayed FGFR1 amplification with an exact correlation of FGFR1 amplification status between tumor and metastatic tissue. CONCLUSIONS FGFR1 amplification is a common genetic event occurring at a frequency of 16% in L-SCCs. Moreover, lymph node metastases derived from FGFR1-amplified L-SCCs also exhibit FGFR1 amplification. Therefore, we suggest that the FGFR1 amplification is a clonal event in tumor progression. Beyond this biologically relevant observation, the findings carry potential therapeutic implications in that small-molecule inhibitors may be applicable to the treatment of a subset of patients with metastatic L-SCC.


Clinical Cancer Research | 2015

FGFR1 Expression Levels Predict BGJ398 Sensitivity of FGFR1-Dependent Head and Neck Squamous Cell Cancers

Friederike Göke; Alina Franzen; Trista K. Hinz; Lindsay Marek; Petros Yoon; Rakesh Sharma; Maike Bode; Anne Von Maessenhausen; Brigitte Lankat-Buttgereit; Antonia Göke; Carsten Golletz; Robert Kirsten; Diana Boehm; Wenzel Vogel; Emily K. Kleczko; Justin R. Eagles; Fred R. Hirsch; Tobias van Bremen; Friedrich Bootz; Andreas Schroeck; Jihye Kim; Aik Choon Tan; Antonio Jimeno; Lynn E. Heasley; Sven Perner

Purpose: FGFR1 copy-number gain (CNG) occurs in head and neck squamous cell cancers (HNSCC) and is used for patient selection in FGFR-specific inhibitor clinical trials. This study explores FGFR1 mRNA and protein levels in HNSCC cell lines, primary tumors, and patient-derived xenografts (PDX) as predictors of sensitivity to the FGFR inhibitor, NVP-BGJ398. Experimental Design: FGFR1 status, expression levels, and BGJ398 sensitive growth were measured in 12 HNSCC cell lines. Primary HNSCCs (n = 353) were assessed for FGFR1 CNG and mRNA levels, and HNSCC TCGA data were interrogated as an independent sample set. HNSCC PDXs (n = 39) were submitted to FGFR1 copy-number detection and mRNA assays to identify putative FGFR1-dependent tumors. Results: Cell line sensitivity to BGJ398 is associated with FGFR1 mRNA and protein levels, not FGFR1 CNG. Thirty-one percent of primary HNSCC tumors expressed FGFR1 mRNA, 18% exhibited FGFR1 CNG, 35% of amplified tumors were also positive for FGFR1 mRNA. This relationship was confirmed with the TCGA dataset. Using high FGFR1 mRNA for selection, 2 HNSCC PDXs were identified, one of which also exhibited FGFR1 CNG. The nonamplified tumor with high mRNA levels exhibited in vivo sensitivity to BGJ398. Conclusions: FGFR1 expression associates with BGJ398 sensitivity in HNSCC cell lines and predicts tyrosine kinase inhibitor sensitivity in PDXs. Our results support FGFR1 mRNA or protein expression, rather than FGFR1 CNG as a predictive biomarker for the response to FGFR inhibitors in a subset of patients suffering from HNSCC. Clin Cancer Res; 21(19); 4356–64. ©2015 AACR.


International Journal of Molecular Sciences | 2012

Exome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue

Roopika Menon; Mario C. Deng; Diana Boehm; Martin Braun; Falko Fend; Detlef Boehm; Saskia Biskup; Sven Perner

Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising technology generating billions of 50 bp sequencing reads. This robust technique, successfully applied in gene identification, might be helpful in detecting novel genes associated with cancer initiation and progression using formalin fixed paraffin embedded (FFPE) tissue. This study’s aim was to compare the validity of whole exome sequencing of fresh-frozen vs. FFPE tumor tissue by normalization to normal prostatic FFPE tissue, obtained from the same patient. One primary fresh-frozen sample, corresponding FFPE prostate cancer sample and matched adjacent normal prostatic tissue was subjected to exome sequencing. The sequenced reads were mapped and compared. Our study was the first to show comparable exome sequencing results between FFPE and corresponding fresh-frozen cancer tissues using SOLiD sequencing. A prior study has been conducted comparing the validity of sequencing of FFPE vs. fresh frozen samples using other NGS platforms. Our validation further proves that FFPE material is a reliable source of material for whole exome sequencing.


Molecular Cancer Research | 2014

Nonamplified FGFR1 Is a Growth Driver in Malignant Pleural Mesothelioma

Lindsay Marek; Trista K. Hinz; Anne von Mässenhausen; Kyle A. Olszewski; Emily K. Kleczko; Diana Boehm; Mary C.M. Weiser-Evans; Raphael A. Nemenoff; Hans Hoffmann; Arne Warth; Joseph M. Gozgit; Sven Perner; Lynn E. Heasley

Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions as a nonmutated growth pathway. In a panel of pleural mesothelioma cell lines, FGFR1 and FGF2 were coexpressed in three of seven cell lines and were significantly associated with sensitivity to the FGFR-active tyrosine kinase inhibitor (TKI), ponatinib, both in vitro and in vivo using orthotopically propagated xenografts. Furthermore, RNAi-mediated silencing confirmed the requirement for FGFR1 in specific mesothelioma cells and sensitivity to the FGF ligand trap, FP-1039, validated the requirement for autocrine FGFs. None of the FGFR1-dependent mesothelioma cells exhibited increased FGFR1 gene copy number, based on a FISH assay, indicating that increased FGFR1 transcript and protein expression were not mediated by gene amplification. Elevated FGFR1 mRNA was detected in a subset of primary MPM clinical specimens and like MPM cells; none harbored increased FGFR1 gene copy number. These results indicate that autocrine signaling through FGFR1 represents a targetable therapeutic pathway in MPM and that biomarkers distinct from increased FGFR1 gene copy number such as FGFR1 mRNA would be required to identify patients with MPM bearing tumors driven by FGFR1 activity. Implications: FGFR1 is a viable therapeutic target in a subset of MPMs, but FGFR TKI-responsive tumors will need to be selected by a biomarker distinct from increased FGFR1 gene copy number, possibly FGFR1 mRNA or protein levels. Mol Cancer Res; 12(10); 1460–9. ©2014 AACR.


International Journal of Cancer | 2014

MED15, encoding a subunit of the mediator complex, is overexpressed at high frequency in castration-resistant prostate cancer

Zaki Shaikhibrahim; Roopika Menon; Martin Braun; Anne Offermann; Angela Queisser; Diana Boehm; Wenzel Vogel; Kerstin Rüenauver; Christian Ruiz; Tobias Zellweger; Maria A. Svensson; Ove Andrén; Glen Kristiansen; Nicolas Wernert; Lukas Bubendorf; Jutta Kirfel; Saskia Biskup; Sven Perner

The mediator complex is an evolutionary conserved key regulator of transcription of protein‐coding genes and an integrative hub for diverse signaling pathways. In this study, we investigated whether the mediator subunit MED15 is implicated in castration‐resistant prostate cancer (CRPC). MED15 expression and copy number/rearrangement status were assessed by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively on 718 prostate cancer (PCa) specimens and sequenced by Sanger on a subset. Furthermore, SMAD3 phosphorylation, androgen receptor (AR) and proliferation markers were evaluated by IHC. In PCa cells, siRNA/shRNA knockdown of MED15 was followed by proliferation assays with/without dihydrotestosterone (DHT), and treatments with recombinant TGF‐β3. Our results show that MED15 is overexpressed in 76% of distant metastatic CRPC (CRPCMET) and 70% of local‐recurrent CRPC (CRPCLOC), in contrast to low frequencies in androgen‐sensitive PCa, and no expression in benign prostatic tissue. Furthermore, MED15 overexpression correlates with worse clinical outcome thus defining a highly lethal phenotype. Moreover, TGF‐β signaling activation associates with MED15 overexpression in PCa tissues, and leads to increased expression of MED15 in PCa cells. MED15 knockdown effects phosphorylation and shuttling of p‐SMAD3 to the nucleus as well as TGF‐β‐enhanced proliferation. In PCa tissues, MED15 overexpression associates with AR overexpression/amplification and correlates with high proliferative activity. MED15 knockdown decreases both androgen‐dependent and ‐independent proliferation in PCa cells. Taken together, these findings implicate MED15 in CRPC, and as MED15 is evolutionary conserved, it is likely to emerge as a lethal phenotype in other therapeutic‐resistant diseases, and not restricted to our disease model.


The Journal of Pathology | 2013

Somatic copy number alterations by whole‐exome sequencing implicates YWHAZ and PTK2 in castration‐resistant prostate cancer

Roopika Menon; Mario C. Deng; Kerstin Rüenauver; Angela Queisser; Martin Pfeifer; Anne Offermann; Diana Boehm; Wenzel Vogel; Veit Scheble; Falko Fend; Glen Kristiansen; Nicolas Wernert; Nicole Oberbeckmann; Saskia Biskup; Mark A. Rubin; Zaki Shaikhibrahim; Sven Perner

Castration‐resistant prostate cancer (CRPC) is the most aggressive form of prostate cancer (PCa) and remains a significant therapeutic challenge. The key to the development of novel therapeutic targets for CRPC is to decipher the molecular alterations underlying this lethal disease. The aim of our study was to identify therapeutic targets for CRPC by assessing somatic copy number alterations (SCNAs) by whole‐exome sequencing on five CRPC/normal paired formalin‐fixed paraffin‐embedded (FFPE) samples, using the SOLiD4 next‐generation sequencing (NGS) platform. Data were validated using fluorescence in situ hybridization (FISH) on a PCa progression cohort. PTK2 and YWHAZ amplification, mRNA and protein expression were determined in selected PCa cell lines. Effects of PTK2 inhibition using TAE226 inhibitor and YWHAZ knock‐down on cell proliferation and migration were tested in PC3 cells in vitro. In a larger validation cohort, the amplification frequency of YWHAZ was 3% in localized PCa and 48% in CRPC, whereas PTK2 was amplified in 1% of localized PCa and 35% in CRPC. YWHAZ knock‐down and PTK2 inhibition significantly affected cell proliferation and migration in the PC3 cells. Our findings suggest that inhibition of YWHAZ and PTK2 could delay the progression of the disease in CRPC patients harbouring amplification of the latter genes. Furthermore, our validated whole‐exome sequencing data show that FFPE tissue could be a promising alternative for SCNA screening using next‐generation sequencing technologies. Copyright


Histopathology | 2013

Fibroblast growth factor receptor 1 gene amplification in pancreatic ductal adenocarcinoma

Nils C. Lehnen; Anne von Mässenhausen; Holger Kalthoff; Hui Zhou; Tim Glowka; Ute Schütte; Tobias Höller; Katarina Riesner; Diana Boehm; Sabine Merkelbach-Bruse; Jutta Kirfel; Sven Perner; Ines Gütgemann

Pancreatic ductal adenocarcinomas (PDACs) are chemoresistant, resulting in extremely poor survival of patients; therefore, novel molecular targets, even in small subsets of genetically characterized tumours, are urgently needed. Tyrosine kinase receptor inhibitors (TKIs) are already in clinical use. The aims of this study were to examine the gene copy number and expression of fibroblast growth factor receptor 1 (FGFR1) in 155 patients with PDAC, and investigate the effects of the FGFR‐specific inhibitor BGJ398 on FGFR1‐amplified pancreatic tumour cells in vitro.


Human Pathology | 2012

Rearrangement of the ETS genes ETV-1, ETV-4, ETV-5, and ELK-4 is a clonal event during prostate cancer progression

Zaki Shaikhibrahim; Martin Braun; Pavel Nikolov; Diana Boehm; Veit Scheble; Roopika Menon; Falko Fend; Glen Kristiansen; Sven Perner; Nicolas Wernert

ETS gene rearrangements are frequently found in prostate cancer. Several studies have assessed the rearrangement status of the most commonly found ETS rearranged gene ERG, and the less frequent genes, ETV-1, ETV-4, ETV-5, and ELK-4 in primary prostate cancer. However, frequency in metastatic disease is not well investigated. Recently, we have assessed the ERG rearrangement status in both primary and corresponding lymph node metastases and observed that ERG rearrangement in primary prostate cancer transfers into lymph node metastases, suggesting it to be a clonal expansion event during prostate cancer progression. As a continuation, we investigated in this study whether this observation is valid for the less frequent ETS rearranged genes. Using dual-color break-apart fluorescent in situ hybridization assays, we evaluated the status of all less frequent ETS gene rearrangements for the first time on tissue microarrays constructed from a large cohort of 86 patients with prostate cancer and composed of primary and corresponding lymph node metastases, as well as in a second cohort composed of 43 distant metastases. ETV-1, ETV-4, ETV-5, and ELK-4 rearrangements were found in 8 (10%) of 81, 5 (6%) of 85, 1 (1%) of 85, and 2 (2%) of 86 of primary prostate cancer, respectively, and in 6 (8%) of 73, 4 (6%) of 72, 1 (1%) of 75, and 1 (1%) of 78 of corresponding lymph node metastases, respectively. ETV-1 and ETV-5 rearrangements were not found in the distant metastases cases, whereas ETV-4 and ELK-4 rearrangements were found in 1 (4%) of 25 and 1 (4%) of 24, respectively. Our findings suggest that rearrangement of the less frequent ETS genes is a clonal event during prostate cancer progression.


The Journal of Molecular Diagnostics | 2012

Improved method of detecting the ERG gene rearrangement in prostate cancer using combined dual-color chromogenic and silver in situ hybridization.

Martin Braun; Julia Stomper; Diana Boehm; Wenzel Vogel; Veit Scheble; Nicolas Wernert; Zaki Shaikhibrahim; Falko Fend; Glen Kristiansen; Sven Perner

The recently detected TMPRSS2-ERG fusion gene was revealed as a recurrent and prevalent prostate cancer (PCa)-specific event, potentially qualifying it for clinical use. To detect this alteration, fluorescence in situ hybridization (FISH) is the method of choice. However, FISH has some disadvantages for widespread adoption in clinical practice. Subsequently, chromogenic in situ hybridization, which uses organic chromogens, and enzymatic metallography silver in situ hybridization have emerged as promising bright-field alternatives. Compared with chromogenic in situ hybridization, silver in situ hybridization signals are very distinct and superior with regard to signal clarity and resolution, but the method excludes multicolor protocols. Based on the ERG break-apart FISH assay, we established a dual-color ERG break-apart assay using combined chromogenic in situ hybridization and silver in situ hybridization (CS-ISH) and compared these results with those obtained by FISH. We assessed 178 PCa and 10 benign specimens for their ERG rearrangement status by applying dual-color FISH and CS-ISH ERG break-apart assays to consecutive sections. We observed a highly significant concordance (97.7%) between FISH- and CS-ISH-based results (Pearsons correlation coefficient = 0.955, P < 0.001). Our findings demonstrate that the ERG rearrangement status can reliably be assessed by CS-ISH. Further, the CS-ISH technique combines the accuracy and precision of FISH with the ease of bright-field microscopy. This tool allows a much broader spectrum of applications in which to study the biological role and clinical use of ERG rearrangements in PCa.


Oncotarget | 2016

Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types

Isabella Syring; Niklas Klümper; Anne Offermann; Martin Braun; Mario C. Deng; Diana Boehm; Angela Queisser; Anne von Mässenhausen; Johannes Brägelmann; Wenzel Vogel; Doris Schmidt; Anne Schindler; Glen Kristiansen; Stefan Müller; Jörg Ellinger; Zaki Shaikhibrahim; Sven Perner

The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking. We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

Collaboration


Dive into the Diana Boehm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Braun

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veit Scheble

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Falko Fend

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge