Diana Dudziak
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana Dudziak.
Nature Immunology | 2004
Randall L Lindquist; Guy Shakhar; Diana Dudziak; Hedda Wardemann; Thomas R. Eisenreich; Michael L. Dustin; Michel C. Nussenzweig
In the steady state, dendritic cells (DCs) in the lymph node induce T cell tolerance to self antigens. Innate signals trigger the maturation of tissue DCs, which migrate into lymph nodes and activate T cells. To examine DCs in vivo, we produced transgenic mice whose DCs expressed enhanced yellow fluorescent protein. Two-photon microscopy of lymph nodes in live mice showed that most of the steady-state DCs were enmeshed in an extensive network and remained in place while actively probing adjacent T cells with their processes. Mature DCs were more motile than steady-state DCs and were rapidly dispersed and integrated into the sessile network, facilitating their interaction with migrating T cells.
Journal of Immunology | 2008
Sayuri Yamazaki; Diana Dudziak; Gordon F. Heidkamp; Christopher Fiorese; Anthony J. Bonito; Kayo Inaba; Michel C. Nussenzweig; Ralph M. Steinman
Foxp3+CD25+CD4+ regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-β- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8+ DEC-205/CD205+ DCs, but not the major fraction of CD8− DC inhibitory receptor-2 (DCIR2)+ DCs, induce functional Foxp3+ Treg from Foxp3− precursors in the presence of low doses of Ag but without added TGF-β. CD8+CD205+ DCs preferentially express TGF-β, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-β. In contrast, CD8−DCIR2+ DCs better induce Foxp3+ Treg when exogenous TGF-β is supplied. In vivo, CD8+CD205+ DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG−/− Foxp3−CD4+ T cells, whereas the CD8−DCIR2+ DCs better stimulate natural Foxp3+ Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3+ Treg, in part through the endogenous formation of TGF-β. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3+ Treg for treatment of autoimmune diseases, transplant rejection, and allergy.
Nature Immunology | 2005
Guy Shakhar; Randall L Lindquist; Diana Dudziak; Julie H. Huang; Michel C. Nussenzweig; Michael L. Dustin
The maturation status of dendritic cells (DCs) determines whether they prime or tolerize T cells. We targeted ovalbumin peptide exclusively to DCs in situ using an antibody to DEC-205 and studied the interaction of DCs with naive CD4+ T cells in tolerizing or priming conditions. We used two-photon microscopy to simultaneously track antigen-specific OT-II T cells, nonspecific T cells and DCs in lymph nodes of living mice. In both tolerance and immunity, OT-II cells arrested on DCs near high endothelial venules beginning shortly after extravasation and regained their baseline speed by 18 h. Thus, early antigen-dependent T cell arrest on DCs is a shared feature of tolerance and priming associated with activation and proliferation.
Journal of Experimental Medicine | 2007
Helena Soares; HaeNa Waechter; Nicholas Glaichenhaus; Evelyne Mougneau; Hideo Yagita; Olga Mizenina; Diana Dudziak; Michel C. Nussenzweig; Ralph M. Steinman
Interferon (IFN)-γ, a cytokine critical for resistance to infection and tumors, is produced by CD4+ helper T lymphocytes after stimulation by cultured dendritic cells (DCs) that secrete a cofactor, interleukin (IL)-12. We have identified a major IL-12–independent pathway whereby DCs induce IFN-γ–secreting T helper (Th)1 CD4+ T cells in vivo. This pathway requires the membrane-associated tumor necrosis family member CD70 and was identified by targeting the LACK antigen from Leishmania major within an antibody to CD205 (DEC-205), an uptake receptor on a subset of DCs. Another major DC subset, targeted with 33D1 anti-DCIR2 antibody, also induced IFN-γ in vivo but required IL-12, not CD70. Isolated CD205+ DCs expressed cell surface CD70 when presenting antigen to T cell receptor transgenic T cells, and this distinction was independent of maturation stimuli. CD70 was also essential for CD205+ DC function in vivo. Detection of the IL-12–independent IFN-γ pathway was obscured with nontargeted LACK, which was presented by both DC subsets. This in situ analysis points to CD70 as a decision maker for Th1 differentiation by CD205+ DCs, even in Th2-prone BALB/c animals and potentially in vaccine design. The results indicate that two DC subsets have innate propensities to differentially affect the Th1/Th2 balance in vivo and by distinct mechanisms.
Journal of Immunology | 2010
Alice O. Kamphorst; Pierre Guermonprez; Diana Dudziak; Michel C. Nussenzweig
Dendritic cells (DCs), which maintain tolerance and orchestrate T cell immune responses, comprise a heterogeneous group of cells. For example, in the steady state, murine spleen contains pre-DC–derived CD8+ and CD8− conventional DCs. During inflammation, monocytes become activated and acquire some DC-like features, such as expression of CD11c and MHC class II. Although each of these cell types can present Ag, the relative efficiency of processing and presentation after Ag capture by different routes has not yet been systematically compared. To this end, we administered OVA to various conventional DCs and activated monocytes by receptor-mediated endocytosis, pinocytosis, or phagocytosis and measured internalization and presentation to MHC class I- and MHC class II-restricted T cells. We find that CD8− DCs are more efficient than any other type of APC tested in terms of presenting Ag to MHC class II-restricted T cells, irrespective of the route of Ag capture. In contrast, both subsets of splenic DCs are highly effective in cross-presenting Ags to CD8+ T cells. DCs and activated monocytes cross-presented Ags delivered by DEC205-mediated endocytosis and pinocytosis. However, DCs differ from activated monocytes in that the latter are several orders of magnitude less efficient in presenting Ags captured by phagocytosis to CD8+ or CD4+ T cells. We conclude that DCs derived from pre-DCs differ from monocyte-derived cells in that DCs process and present Ags efficiently irrespective of the route of Ag capture. Our observations have significant implications for understanding initiation of immune responses and vaccination strategies targeting DCs and activated monocytes.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Heike Albert; Mattias Collin; Diana Dudziak; Jeffrey V. Ravetch; Falk Nimmerjahn
IgG antibodies are potent inducers of proinflammatory responses. During autoimmune diseases such as arthritis and systemic lupus erythematosus, IgG autoantibodies are responsible for the chronic inflammation and destruction of healthy tissues by cross-linking Fc receptors on innate immune effector cells. The sugar moiety attached to the asparagine-297 residue in the constant domain of the antibody is critical for the overall structure and function of the molecule. Removal of this sugar domain leads to the loss of the proinflammatory activity, suggesting that in vivo modulation of antibody glycosylation might be a strategy to interfere with autoimmune processes. In this work, we investigated whether removal of the majority of the IgG-associated sugar domain by endoglycosidase S (EndoS) from Streptococcus pyogenes is able to interfere with autoimmune inflammation. We demonstrate that EndoS injection efficiently removes the IgG-associated sugar domain in vivo and interferes with autoantibody-mediated proinflammatory processes in a variety of autoimmune models. Importantly, however, we observed a differential impact of EndoS-mediated sugar side chain hydrolysis on IgG activity depending on the individual IgG subclass.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Falk Nimmerjahn; Anja Lux; Heike Albert; Melissa Woigk; Christian W. Lehmann; Diana Dudziak; Patrick Smith; Jeffrey V. Ravetch
Cellular Fcγ receptors are essential for IgG-dependent effector functions in vivo. There is convincing evidence that selective activating Fcγ receptors are responsible for the activity of individual IgG subclasses. Thus, IgG1 activity is absent in FcγRIII-deficient mice, and several studies suggest that the activity of the most potent IgG subclasses, IgG2a and IgG2b, might be dependent on either individual or a combination of activating FcγRs. To study the role of individual activating FcγRs for IgG subclass activity, we generated an FcγRIV-deficient mouse and showed that a variety of IgG2a- and IgG2b-dependent effector functions are impaired in the absence of this activating Fc receptor in models of autoimmunity and antibody-dependent cellular cytotoxicity.
Immunity | 2011
Markus Biburger; Susanne Aschermann; Inessa Schwab; Anja Lux; Heike Albert; Heike Danzer; Melissa Woigk; Diana Dudziak; Falk Nimmerjahn
Immunoglobulin G (IgG) antibodies confer protection against pathogenic microorganisms, serve as therapeutics in tumor therapy, and are involved in destruction of healthy tissues during autoimmune diseases. Understanding the molecular pathways and effector cell types involved in antibody-mediated effector functions is a prerequisite to modulate these activities. In this study we used two independent model systems to identify innate immune effector cells required for IgG activity in vivo. We first defined the precise repertoire of receptors for the IgG Fc fragment (FcγR) on innate immune effector cells in the blood and on tissue-resident macrophage populations. Despite expression of relevant activating FcγRs on various phagocyte populations, our data indicate that the majority of these cell types are dispensable for IgG activity in vivo. In contrast, IgG-dependent effector functions were selectively impaired in animals lacking the CX(3)CR1(hi)Ly6C(lo)CD11c(int) monocyte subset, which expressed the full set of FcγRs required for IgG activity.
Journal of Immunology | 2011
Jakob Loschko; Sylvia Heink; Daniela Hackl; Diana Dudziak; Wolfgang Reindl; Thomas Korn; Anne Krug
Plasmacytoid dendritic cells (PDCs) have been shown to present Ags and to contribute to peripheral immune tolerance and to Ag-specific adaptive immunity. However, modulation of adaptive immune responses by selective Ag targeting to PDCs with the aim of preventing autoimmunity has not been investigated. In the current study, we demonstrate that in vivo Ag delivery to murine PDCs via the specifically expressed surface molecule sialic acid binding Ig-like lectin H (Siglec-H) inhibits Th cell and Ab responses in the presence of strong immune stimulation in an Ag-specific manner. Correlating with sustained low-level MHC class II-restricted Ag presentation on PDCs, Siglec-H–mediated Ag delivery induced a hyporesponsive state in CD4+ T cells leading to reduced expansion and Th1/Th17 cell polarization without conversion to Foxp3+ regulatory T cells or deviation to Th2 or Tr1 cells. Siglec-H–mediated delivery of a T cell epitope derived from the autoantigen myelin oligodendrocyte glycoprotein to PDCs effectively delayed onset and reduced disease severity in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by interfering with the priming phase without promoting the generation or expansion of myelin oligodendrocyte glycoprotein-specific Foxp3+ regulatory T cells. We conclude that Ag delivery to PDCs can be harnessed to inhibit Ag-specific immune responses and prevent Th cell-dependent autoimmunity.
Nature Immunology | 2017
René Pfeifle; Tobias Rothe; Natacha Ipseiz; Hans Ulrich Scherer; Stephan Culemann; Ulrike Harre; Jochen A. Ackermann; Martina Seefried; Arnd Kleyer; Stefan Uderhardt; Benjamin Haugg; Axel J. Hueber; Patrick Daum; Gordon F. Heidkamp; Changrong Ge; Sybille Böhm; Anja Lux; Wolfgang Schuh; Iryna Magorivska; Kutty Selva Nandakumar; Erik Lönnblom; Christoph Becker; Diana Dudziak; Manfred Wuhrer; Yoann Rombouts; Carolien A. M. Koeleman; René E. M. Toes; Thomas H. Winkler; Rikard Holmdahl; Martin J. Herrmann
The checkpoints and mechanisms that contribute to autoantibody-driven disease are as yet incompletely understood. Here we identified the axis of interleukin 23 (IL-23) and the TH17 subset of helper T cells as a decisive factor that controlled the intrinsic inflammatory activity of autoantibodies and triggered the clinical onset of autoimmune arthritis. By instructing B cells in an IL-22- and IL-21-dependent manner, TH17 cells regulated the expression of β-galactoside α2,6-sialyltransferase 1 in newly differentiating antibody-producing cells and determined the glycosylation profile and activity of immunoglobulin G (IgG) produced by the plasma cells that subsequently emerged. Asymptomatic humans with rheumatoid arthritis (RA)-specific autoantibodies showed identical changes in the activity and glycosylation of autoreactive IgG antibodies before shifting to the inflammatory phase of RA; thus, our results identify an IL-23–TH17 cell–dependent pathway that controls autoantibody activity and unmasks a preexisting breach in immunotolerance.