Gordon F. Heidkamp
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gordon F. Heidkamp.
Journal of Immunology | 2008
Sayuri Yamazaki; Diana Dudziak; Gordon F. Heidkamp; Christopher Fiorese; Anthony J. Bonito; Kayo Inaba; Michel C. Nussenzweig; Ralph M. Steinman
Foxp3+CD25+CD4+ regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-β- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8+ DEC-205/CD205+ DCs, but not the major fraction of CD8− DC inhibitory receptor-2 (DCIR2)+ DCs, induce functional Foxp3+ Treg from Foxp3− precursors in the presence of low doses of Ag but without added TGF-β. CD8+CD205+ DCs preferentially express TGF-β, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-β. In contrast, CD8−DCIR2+ DCs better induce Foxp3+ Treg when exogenous TGF-β is supplied. In vivo, CD8+CD205+ DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG−/− Foxp3−CD4+ T cells, whereas the CD8−DCIR2+ DCs better stimulate natural Foxp3+ Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3+ Treg, in part through the endogenous formation of TGF-β. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3+ Treg for treatment of autoimmune diseases, transplant rejection, and allergy.
Nature Immunology | 2017
René Pfeifle; Tobias Rothe; Natacha Ipseiz; Hans Ulrich Scherer; Stephan Culemann; Ulrike Harre; Jochen A. Ackermann; Martina Seefried; Arnd Kleyer; Stefan Uderhardt; Benjamin Haugg; Axel J. Hueber; Patrick Daum; Gordon F. Heidkamp; Changrong Ge; Sybille Böhm; Anja Lux; Wolfgang Schuh; Iryna Magorivska; Kutty Selva Nandakumar; Erik Lönnblom; Christoph Becker; Diana Dudziak; Manfred Wuhrer; Yoann Rombouts; Carolien A. M. Koeleman; René E. M. Toes; Thomas H. Winkler; Rikard Holmdahl; Martin J. Herrmann
The checkpoints and mechanisms that contribute to autoantibody-driven disease are as yet incompletely understood. Here we identified the axis of interleukin 23 (IL-23) and the TH17 subset of helper T cells as a decisive factor that controlled the intrinsic inflammatory activity of autoantibodies and triggered the clinical onset of autoimmune arthritis. By instructing B cells in an IL-22- and IL-21-dependent manner, TH17 cells regulated the expression of β-galactoside α2,6-sialyltransferase 1 in newly differentiating antibody-producing cells and determined the glycosylation profile and activity of immunoglobulin G (IgG) produced by the plasma cells that subsequently emerged. Asymptomatic humans with rheumatoid arthritis (RA)-specific autoantibodies showed identical changes in the activity and glycosylation of autoreactive IgG antibodies before shifting to the inflammatory phase of RA; thus, our results identify an IL-23–TH17 cell–dependent pathway that controls autoantibody activity and unmasks a preexisting breach in immunotolerance.
Cell Stem Cell | 2014
Kadriye Nehir Cosgun; Susann Rahmig; Nicole Mende; Sören Reinke; Ilona Hauber; Carola Schäfer; Anke Petzold; Henry Weisbach; Gordon F. Heidkamp; Ariawan Purbojo; Robert Cesnjevar; Alexander Platz; Martin Bornhäuser; Marc Schmitz; Diana Dudziak; Joachim Hauber; Jörg Kirberg; Claudia Waskow
In-depth analysis of the cellular and molecular mechanisms regulating human HSC function will require a surrogate host that supports robust maintenance of transplanted human HSCs in vivo, but the currently available options are problematic. Previously we showed that mutations in the Kit receptor enhance engraftment of transplanted HSCs in the mouse. To generate an improved model for human HSC transplantation and analysis, we developed immune-deficient mouse strains containing Kit mutations. We found that mutation of the Kit receptor enables robust, uniform, sustained, and serially transplantable engraftment of human HSCs in adult mice without a requirement for irradiation conditioning. Using this model, we also showed that differential KIT expression identifies two functionally distinct subpopulations of human HSCs. Thus, we have found that the capacity of this Kit mutation to open up stem cell niches across species barriers has significant potential and broad applicability in human HSC research.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Anne Baerenwaldt; Anja Lux; Heike Danzer; Bernd M. Spriewald; Evelyn Ullrich; Gordon F. Heidkamp; Diana Dudziak; Falk Nimmerjahn
Maintenance of immunological tolerance is crucial to prevent development of autoimmune disease. The production of autoantibodies is a hallmark of many autoimmune diseases and studies in mouse model systems suggest that inhibitory signaling molecules may be important checkpoints of humoral tolerance. By generating humanized mice with normal and functionally impaired Fcγ receptor IIB (FcγRIIB) variants, we show that the inhibitory Fcγ-receptor is a checkpoint of humoral tolerance in the human immune system in vivo. Impaired human FcγRIIB function resulted in the generation of higher levels of serum immunoglobulins, the production of different autoantibody specificities, and a higher proportion of human plasmablasts and plasma cells in vivo. Our results suggest that the inhibitory FcγRIIB may be an important checkpoint of humoral tolerance in the human immune system.
Blood | 2013
Andreas Baur; Manfred B. Lutz; Stephan Schierer; Luca Beltrame; Gabi Theiner; Elisabeth Zinser; Christian Ostalecki; Gordon F. Heidkamp; Ina Haendle; Michael Erdmann; Manuel Wiesinger; Waltraud Leisgang; Stefanie Gross; Ansgar J. Pommer; Eckhart Kämpgen; Diana Dudziak; Alexander Steinkasserer; Duccio Cavalieri; Beatrice Schuler-Thurner; Gerold Schuler
Denileukin diftitox (DD), a diphtheria toxin fragment IL-2 fusion protein, is thought to target and kill CD25(+) cells. It is approved for the treatment of cutaneous T-cell lymphoma and is used experimentally for the depletion of regulatory T cells (Treg) in cancer trials. Curiously enough, clinical effects of DD did not strictly correlate with CD25 expression, and Treg depletion was not confirmed unambiguously. Here, we report that patients with melanoma receiving DD immediately before a dendritic cell (DC) vaccine failed to develop a tumor-antigen-specific CD4 and CD8 T-cell immune response even after repeated vaccinations. Analyzing the underlying mechanism, so far we found unknown effects of DD. First, DD modulated DCs toward tolerance by downregulating costimulatory receptors such as CD83 and CD25 while upregulating tolerance-associated proteins/pathways including Stat-3, β-catenin, and class II transactivator-dependent antigen presentation. Second, DD blocked Stat3 phosphorylation in maturing DCs. Third, only activated, but not resting, Treg internalized DD and were killed. Conversely, resting Treg showed increased survival because of DD-mediated antiapoptotic IL-2 signaling. We conclude that DD exerts functions beyond CD25(+) cell killing that may affect their clinical use and could be tested for novel indications.
Journal of Immunology | 2014
Kirsten Neubert; Christian H. K. Lehmann; Lukas Heger; Anna Baranska; Anna Maria Staedtler; Veit R. Buchholz; Sayuri Yamazaki; Gordon F. Heidkamp; Nathalie Eissing; Henry Zebroski; Michel C. Nussenzweig; Falk Nimmerjahn; Diana Dudziak
Dendritic cells (DCs) are central modulators of immune responses and, therefore, interesting target cells for the induction of antitumor immune responses. Ag delivery to select DC subpopulations via targeting Abs to DC inhibitory receptor 2 (DCIR2, clone 33D1) or to DEC205 was shown to direct Ags specifically to CD11c+CD8− or CD11c+CD8+ DCs, respectively, in vivo. In contrast to the increasing knowledge about the induction of immune responses by efficiently cross-presenting CD11c+CD8+ DCs, little is known about the functional role of Ag-presenting CD11c+CD8− DCs with regard to the initiation of protective immune responses. In this study, we demonstrate that Ag targeting to the CD11c+CD8− DC subpopulation in the presence of stimulating anti-CD40 Ab and TLR3 ligand polyinosinic-polycytidylic acid induces protective responses against rapidly growing tumor cells in naive animals under preventive and therapeutic treatment regimens in vivo. Of note, this immunization protocol induced a mixed Th1/Th2-driven immune response, irrespective of which DC subpopulation initially presented the Ag. Our results provide important information about the role of CD11c+CD8− DCs, which have been considered to be less efficient at cross-presenting Ags, in the induction of protective antitumor immune responses.
Science immunology | 2016
Gordon F. Heidkamp; Jil Sander; Christian H. K. Lehmann; Lukas Heger; Nathalie Eissing; Anna Baranska; Jennifer J. Lühr; Alana Hoffmann; Katharina C. Reimer; Anja Lux; Stephan Söder; Arndt Hartmann; Johannes Zenk; Thomas Ulas; Naomi McGovern; Christoph Alexiou; Bernd M. Spriewald; Andreas Mackensen; Gerold Schuler; Burkhard Schauf; Anja Forster; Roland Repp; Peter A. Fasching; Ariawan Purbojo; Robert Cesnjevar; Evelyn Ullrich; Florent Ginhoux; Andreas Schlitzer; Falk Nimmerjahn; Joachim L. Schultze
Transcriptional identity of human dendritic cell subsets is mainly dictated by ontogeny rather than by signals derived from the cells’ final tissue microenvironment. Dendritic cell branches Dendritic cell (DC) subsets have been well studied in mice; however, the relative contribution of ontogeny and tissue microenvironment to DC function in humans is less clear. Now, Heidkamp et al. perform phenotypic and transcriptional profiling of three DC subtypes in different human tissues from a large number of individuals. They find that DC subpopulations in more lympho-hemaotopoietic organs (spleen, thymus, and blood) are more strongly influenced by ontogeny, whereas those from lung and skin may be influenced by the issue microenvironment. The data collected here provide an in depth look at the transcriptional profile of dendritic cell subsets in humans and inform our understanding of human DC biology. In mice, conventional and plasmacytoid dendritic cells (DCs) derive from separate hematopoietic precursors before they migrate to peripheral tissues. Moreover, two classes of conventional DCs (cDC1 and cDC2 DCs) and one class of plasmacytoid DCs (pDCs) have been shown to be transcriptionally and functionally distinct entities. In humans, these three DC subtypes can be identified using the cell surface markers CD1c (cDC2), CD141 (cDC1), and CD303 (pDCs), albeit it remains elusive whether DC functionality is mainly determined by ontogeny or the tissue microenvironment. By phenotypic and transcriptional profiling of these three DC subtypes in different human tissues derived from a large number of human individuals, we demonstrate that DC subpopulations in organs of the lymphohematopoietic system (spleen, thymus, and blood) are strongly defined by ontogeny rather than by signals from the microenvironment. In contrast, DC subsets derived from human lung or skin differed substantially, strongly arguing that DCs react toward modulatory signals from tissue microenvironments. Collectively, the data obtained in this study may serve as a major resource to guide further studies into human DC biology during homeostasis and inflammation.
Vaccine | 2016
Christian H. K. Lehmann; Lukas Heger; Gordon F. Heidkamp; Anna Baranska; Jennifer J. Lühr; Alana Hoffmann; Diana Dudziak
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Cell Reports | 2014
Anja Lux; Michaela Seeling; Anne Baerenwaldt; Birgit Lehmann; Inessa Schwab; Roland Repp; Norbert Meidenbauer; Andreas Mackensen; Arndt Hartmann; Gordon F. Heidkamp; Diana Dudziak; Falk Nimmerjahn
Genetic differences between humans and in vivo model systems, including mice and nonhuman primates, make it difficult to predict the efficacy of immunoglobulin G (IgG) activity in humans and understand the molecular and cellular mechanisms underlying that activity. To bridge this gap, we established a small-animal model system that allowed us to study human IgG effector functions in the context of an intact human immune system without the interference of murine Fcγ receptors expressed on mouse innate immune effector cells in vivo. Using a model of B cell depletion with different human IgG variants that recognize CD20, we show that this humanized mouse model can provide unique insights into the mechanism of human IgG activity in vivo. Importantly, these studies identify the bone marrow as a niche with low therapeutic IgG activity.
Immunology Letters | 2014
Nathalie Eissing; Lukas Heger; Anna Baranska; Robert Cesnjevar; Maike Büttner-Herold; Stephan Söder; Arndt Hartmann; Gordon F. Heidkamp; Diana Dudziak
Confocal laser scanning microscopy is an advanced technique for imaging tissue samples in vitro and in vivo at high optical resolution. The development of new fluorochrome variants do not only make it possible to perform multicolor flow cytometry of single cells, but in combination with high resolution laser scanning systems also to investigate the distribution of cells in lymphoid tissues by confocal immunofluorescence analyses, thus allowing the distinction of various cell populations directly in the tissue. Here, we provide a protocol for the visualization of at least six differently fluorochrome-labeled antibodies at the same time using a conventional confocal laser scanning microscope with four laser lines (405 nm, 488 nm, 555 nm, and 639 nm laser wavelength) in both murine and human tissue samples. We further demonstrate that compensation correction algorithms are not necessary to reduce spillover of fluorochromes into other channels when the used fluorochromes are combined according to their specific emission bands and the varying Stokes shift for co-excited fluorochromes with the same laser line.