Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Hildebrand is active.

Publication


Featured researches published by Diana Hildebrand.


PLOS ONE | 2012

Identification of Thalidomide-Specific Transcriptomics and Proteomics Signatures during Differentiation of Human Embryonic Stem Cells

Kesavan Meganathan; Smita Jagtap; Vilas Wagh; Johannes Winkler; John Antonydas Gaspar; Diana Hildebrand; Maria Trusch; Karola Lehmann; Jürgen Hescheler; Hartmut Schlüter; Agapios Sachinidis

Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2), that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.


Brain | 2014

High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer’s disease

Frank Dohler; Diego Sepulveda-Falla; Susanne Krasemann; Hermann Altmeppen; Hartmut Schlüter; Diana Hildebrand; Inga Zerr; Jakob Matschke; Markus Glatzel

Alzheimers disease is the most common form of dementia and the generation of oligomeric species of amyloid-β is causal to the initiation and progression of it. Amyloid-β oligomers bind to the N-terminus of plasma membrane-bound cellular prion protein (PrP(C)) initiating a series of events leading to synaptic degeneration. Composition of bound amyloid-β oligomers, binding regions within PrP(C), binding affinities and modifiers of this interaction have been almost exclusively studied in cell culture or murine models of Alzheimers disease and our knowledge on PrP(C)-amyloid-β interaction in patients with Alzheimers disease is limited regarding occurrence, binding regions in PrP(C), and size of bound amyloid-β oligomers. Here we employed a PrP(C)-amyloid-β binding assay and size exclusion chromatography on neuropathologically characterized Alzheimers disease and non-demented control brains (n = 15, seven female, eight male, average age: 79.2 years for Alzheimers disease and n = 10, three female, seven male, average age: 66.4 years for controls) to investigate amyloid-β-PrP(C) interaction. PrP(C)-amyloid-β binding always occurred in Alzheimers disease brains and was never detected in non-demented controls. Neither expression level of PrP(C) nor known genetic modifiers of Alzheimers disease, such as the PrP(C) codon 129 polymorphism, influenced this interaction. In Alzheimers disease brains, binding of amyloid-β to PrP(C) occurred via the PrP(C) N-terminus. For synthetic amyloid-β42, small oligomeric species showed prominent binding to PrP(C), whereas in Alzheimers disease brains larger protein assemblies containing amyloid-β42 bound efficiently to PrP(C). These data confirm Alzheimers disease specificity of binding of amyloid-β to PrP(C) via its N-terminus in a large cohort of Alzheimers disease/control brains. Differences in sizes of separated protein fractions between synthetic and brain-derived amyloid-β binding to PrP(C) suggest that larger assemblies of amyloid-β or additional non-amyloid-β components may play a role in binding of amyloid-β42 to PrP(C) in Alzheimers disease.


Journal of Chromatography A | 2010

Application of displacement chromatography for the proteome analysis of a human plasma protein fraction.

Robert Ahrends; Björn Lichtner; Andreas Bertsch; Oliver Kohlbacher; Diana Hildebrand; Maria Trusch; Hartmut Schlüter

It was the aim of this study to compare the performance of displacement chromatography with gradient elution chromatography both applied as the cation-exchange separation step for a proteome analysis in a bottom-up approach using multidimensional chromatography for the separation of tryptic peptides prior to their mass spectrometric analysis. The tryptic digest of the human Cohn fraction IV-4 served as a sample. For both chromatography modes commonly used operating parameters were chosen thus ensuring optimal separation results of equal sample amounts for each mode. All resulting fractions were analyzed with an HPLC-chip-LC-MS system. The eluate of the HPLC-chip column was ionized by electrospray ionization (ESI) and analyzed with an ion-trap mass spectrometer. For guaranteeing high confidence concerning the identity of the peptides, the mass spectrometric data were processed by different bioinformatic tools applying stringent criteria. By the displacement approach the total amount of identified proteins (78) was significantly higher than in the gradient mode (58). The results showed that displacement chromatography is a well suited alternative in comparison to gradient elution separation for analysis of proteomes via the bottom-up approach applying multidimensional chromatography, especially in those cases when larger quantities of proteins are available.


PLOS ONE | 2013

Proteolytic Processing of Angiotensin-I in Human Blood Plasma

Diana Hildebrand; Philipp Merkel; Lars Florian Eggers; Hartmut Schlüter

In mammalian species, except humans, N-terminal processing of the precursor peptide angiotensin I (ANG-1-10) into ANG-2-10 or ANG-3-10 was reported. Here we hypothesize that aminopeptidase-generated angiotensins bearing the same C-terminus as ANG-1-10 are also present in humans. We demonstrate the time dependent generation of ANG-2-10, ANG-3-10, ANG-4-10, ANG-5-10 and ANG-6-10 from the precursor ANG-1-10 by human plasma proteins. The endogenous presence of ANG-4-10, ANG-5-10 and ANG-6-10 in human plasma was confirmed by an immuno-fluorescence assay. Generation of ANG-2-10, ANG-3-10 and ANG-4-10 from ANG-1-10 by immobilized human plasma proteins was sensitive to the cysteine/serine protease inhibitor antipain. The metal ion chelator EDTA inhibited Ang-6-10-generation. Incubation of the substrates ANG-3-10, ANG-4-10 and ANG-5-10 with recombinant aminopeptidase N (APN) resulted in a successive N-terminal processing, finally releasing ANG-6-10 as a stable end product, demonstrating a high similarity concerning the processing pattern of the angiotensin peptides compared to the angiotensin generating activity in plasma. Recombinant ACE-1 hydrolyzed the peptides ANG-2-10, ANG-3-10, ANG-4-10 and ANG-5-10 into ANG-2-8, ANG-3-8, ANG-4-8 and ANG-5-8. Since ANG-2-10 was processed into ANG-2-8, ANG-4-8 and ANG-5-8 by plasma proteases the angiotensin peptides bearing the same C-terminus as ANG-1-10 likely have a precursor function in human plasma. Our results confirm the hypothesis of aminopeptidase mediated processing of ANG-1-10 in humans. We show the existence of an aminopeptidase mediated pathway in humans that bypasses the known ANG-1-8-carboxypeptidase pathway. This expands the knowledge about the known human renin angiotensin system, showing how efficiently the precursor ANG-1-10 is used by nature.


Toxins | 2014

Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis.

Aisha Munawar; Maria Trusch; Dessislava Georgieva; Diana Hildebrand; Marcel Kwiatkowski; Henning N. Behnken; Sönke Harder; Raghuvir Krishnaswamy Arni; Patrick Spencer; Hartmut Schlüter; Christian Betzel

Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.


PLOS ONE | 2014

Alpha-1-Antitrypsin: A Novel Human High Temperature Requirement Protease A1 (HTRA1) Substrate in Human Placental Tissue

Violette Frochaux; Diana Hildebrand; Anja Talke; Michael W. Linscheid; Hartmut Schlüter

The human serine protease high temperature requirement A1 (HTRA1) is highly expressed in the placental tissue, especially in the last trimester of gestation. This suggests that HTRA1 is involved in placental formation and function. With the aim of a better understanding of the role of HTRA1 in the placenta, candidate substrates were screened in a placenta protein extract using a gel-based mass spectrometric approach. Protease inhibitor alpha-1-antitrypsin, actin cytoplasmic 1, tropomyosin beta chain and ten further proteins were identified as candidate substrates of HTRA1. Among the identified candidate substrates, alpha-1-antitrypsin (A1AT) was considered to be of particular interest because of its important role as protease inhibitor. For investigation of alpha-1-antitrypsin as substrate of HTRA1 synthetic peptides covering parts of the sequence of alpha-1-antitrypsin were incubated with HTRA1. By mass spectrometry a specific cleavage site was identified after met-382 (AIPM382↓383SIPP) within the reactive centre loop of alpha-1-antitrypsin, resulting in a C-terminal peptide comprising 36 amino acids. Proteolytic removal of this peptide from alpha-1-antitrypsin results in a loss of its inhibitor function. Beside placental alpha-1-antitrypsin the circulating form in human plasma was also significantly degraded by HTRA1. Taken together, our data suggest a link between the candidate substrates alpha-1-antitrypsin and the function of HTRA1 in the placenta in the syncytiotrophoblast, the cell layer attending to maternal blood in the villous tree of the human placenta. Data deposition: Mass spectrometry (MS) data have been deposited to the ProteomeXchange with identifier PXD000473.


Journal of The American Society of Nephrology | 2014

Alterations in the Ubiquitin Proteasome System in Persistent but Not Reversible Proteinuric Diseases

Maire Beeken; Maja T. Lindenmeyer; Simone M. Blattner; Victoria Radón; Jun Oh; Tobias N. Meyer; Diana Hildebrand; Hartmut Schlüter; Anna T. Reinicke; Jan Hendrik Knop; Anuradha Vivekanandan-Giri; Silvia Münster; Marlies Sachs; Thorsten Wiech; Subramaniam Pennathur; Clemens D. Cohen; Matthias Kretzler; Rolf A.K. Stahl; Catherine Meyer-Schwesinger

Podocytes are the key cells affected in nephrotic glomerular kidney diseases, and they respond uniformly to injury with cytoskeletal rearrangement. In nephrotic diseases, such as membranous nephropathy and FSGS, persistent injury often leads to irreversible structural damage, whereas in minimal change disease, structural alterations are mostly transient. The factors leading to persistent podocyte injury are currently unknown. Proteolysis is an irreversible process and could trigger persistent podocyte injury through degradation of podocyte-specific proteins. We, therefore, analyzed the expression and functional consequence of the two most prominent proteolytic systems, the ubiquitin proteasome system (UPS) and the autophagosomal/lysosomal system, in persistent and transient podocyte injuries. We show that differential upregulation of both proteolytic systems occurs in persistent human and rodent podocyte injury. The expression of specific UPS proteins in podocytes differentiated children with minimal change disease from children with FSGS and correlated with poor clinical outcome. Degradation of the podocyte-specific protein α-actinin-4 by the UPS depended on oxidative modification in membranous nephropathy. Notably, the UPS was overwhelmed in podocytes during experimental glomerular disease, resulting in abnormal protein accumulation and compensatory upregulation of the autophagosomal/lysosomal system. Accordingly, inhibition of both proteolytic systems enhanced proteinuria in persistent nephrotic disease. This study identifies altered proteolysis as a feature of persistent podocyte injury. In the future, specific UPS proteins may serve as new biomarkers or therapeutic targets in persistent nephrotic syndrome.


Journal of Separation Science | 2010

Improved particle-packed HPLC/MS microchips for proteomic analysis

Maria Trusch; Steffen Ehlert; Andreas Bertsch; Oliver Kohlbacher; Diana Hildebrand; Hartmut Schlüter; Ulrich Tallarek

The influence of packing process parameters (packing pressure, application of ultrasound) and the stationary phase particle size (3.5 and 5 μm) on the chromatographic performance of HPLC/MS chips was systematically investigated for proteomic samples. First, reproducibility and detection limits of the separation were evaluated with a low-complexity sample of tryptic BSA peptides. The influence of adsorbent packing quality on protein identification was then tested with a typical proteomics sample of high complexity, a human plasma protein fraction (Cohn fraction IV-4). All HPLC/MS chips provided highly reproducible separations of these proteomic samples, but improved packing conditions and smaller particle sizes resulted in chromatograms with narrower peaks and correspondingly higher signal intensities. Improved separation performance increased the peak capacity, the number of identified peptides, and thus the sequence coverage in the proteomic samples, particularly for low sample amounts.


Journal of Chromatography B | 2010

Application of displacement chromatography for the analysis of a lipid raft proteome

Maria Trusch; Alexandra Böhlick; Diana Hildebrand; Björn Lichtner; Andreas Bertsch; Oliver Kohlbacher; S. Bachmann; Hartmut Schlüter

Defining membrane proteomes is fundamental to understand the role of membrane proteins in biological processes and to find new targets for drug development. Usually multidimensional chromatography using step or gradient elution is applied for the separation of tryptic peptides of membrane proteins prior to their mass spectrometric analysis. Displacement chromatography (DC) offers several advantages that are helpful for proteome analysis. However, DC has so far been applied for proteomic investigations only in few cases. In this study we therefore applied DC in a multidimensional LC-MS approach for the separation and identification of membrane proteins located in cholesterol-enriched membrane microdomains (lipid rafts) obtained from rat kidney by density gradient centrifugation. The tryptic peptides were separated on a cation-exchange column in the displacement mode with spermine used as displacer. Fractions obtained from DC were analyzed using an HPLC-chip system coupled to an electrospray-ionization ion-trap mass spectrometer. This procedure yielded more than 400 highly significant peptide spectrum matches and led to the identification of more than 140 reliable protein hits within an established rat kidney lipid raft proteome. The majority of identified proteins were membrane proteins. In sum, our results demonstrate that DC is a suitable alternative to gradient elution separations for the identification of proteins via a multidimensional LC-MS approach.


PLOS ONE | 2012

Inferring Proteolytic Processes from Mass Spectrometry Time Series Data Using Degradation Graphs

Stephan Aiche; Knut Reinert; Christof Schütte; Diana Hildebrand; Hartmut Schlüter; Tim Conrad

Background Proteases play an essential part in a variety of biological processes. Besides their importance under healthy conditions they are also known to have a crucial role in complex diseases like cancer. In recent years, it has been shown that not only the fragments produced by proteases but also their dynamics, especially ex vivo, can serve as biomarkers. But so far, only a few approaches were taken to explicitly model the dynamics of proteolysis in the context of mass spectrometry. Results We introduce a new concept to model proteolytic processes, the degradation graph. The degradation graph is an extension of the cleavage graph, a data structure to reconstruct and visualize the proteolytic process. In contrast to previous approaches we extended the model to incorporate endoproteolytic processes and present a method to construct a degradation graph from mass spectrometry time series data. Based on a degradation graph and the intensities extracted from the mass spectra it is possible to estimate reaction rates of the underlying processes. We further suggest a score to rate different degradation graphs in their ability to explain the observed data. This score is used in an iterative heuristic to improve the structure of the initially constructed degradation graph. Conclusion We show that the proposed method is able to recover all degraded and generated peptides, the underlying reactions, and the reaction rates of proteolytic processes based on mass spectrometry time series data. We use simulated and real data to demonstrate that a given process can be reconstructed even in the presence of extensive noise, isobaric signals and false identifications. While the model is currently only validated on peptide data it is also applicable to proteins, as long as the necessary time series data can be produced.

Collaboration


Dive into the Diana Hildebrand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge