Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Karpman is active.

Publication


Featured researches published by Diana Karpman.


The New England Journal of Medicine | 2013

Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome

Christophe Legendre; Christoph Licht; Petra Muus; Laurence Greenbaum; Sunil Babu; C. Bedrosian; C. Bingham; David J. Cohen; Y. Delmas; Kenneth W. Douglas; Frank Eitner; T. Feldkamp; Denis Fouque; Richard R. Furman; Osama Gaber; Maria Herthelius; Maryvonne Hourmant; Diana Karpman; Yvon Lebranchu; C. Mariat; Jan Menne; B. Moulin; J. Nurnberger; M. Ogawa; Giuseppe Remuzzi; T. Richard; R. Sberro-Soussan; B. Severino; Neil S. Sheerin; Antonella Trivelli

BACKGROUND Atypical hemolytic-uremic syndrome is a genetic, life-threatening, chronic disease of complement-mediated thrombotic microangiopathy. Plasma exchange or infusion may transiently maintain normal levels of hematologic measures but does not treat the underlying systemic disease. METHODS We conducted two prospective phase 2 trials in which patients with atypical hemolytic-uremic syndrome who were 12 years of age or older received eculizumab for 26 weeks and during long-term extension phases. Patients with low platelet counts and renal damage (in trial 1) and those with renal damage but no decrease in the platelet count of more than 25% for at least 8 weeks during plasma exchange or infusion (in trial 2) were recruited. The primary end points included a change in the platelet count (in trial 1) and thrombotic microangiopathy event-free status (no decrease in the platelet count of >25%, no plasma exchange or infusion, and no initiation of dialysis) (in trial 2). RESULTS A total of 37 patients (17 in trial 1 and 20 in trial 2) received eculizumab for a median of 64 and 62 weeks, respectively. Eculizumab resulted in increases in the platelet count; in trial 1, the mean increase in the count from baseline to week 26 was 73×10(9) per liter (P<0.001). In trial 2, 80% of the patients had thrombotic microangiopathy event-free status. Eculizumab was associated with significant improvement in all secondary end points, with continuous, time-dependent increases in the estimated glomerular filtration rate (GFR). In trial 1, dialysis was discontinued in 4 of 5 patients. Earlier intervention with eculizumab was associated with significantly greater improvement in the estimated GFR. Eculizumab was also associated with improvement in health-related quality of life. No cumulative toxicity of therapy or serious infection-related adverse events, including meningococcal infections, were observed through the extension period. CONCLUSIONS Eculizumab inhibited complement-mediated thrombotic microangiopathy and was associated with significant time-dependent improvement in renal function in patients with atypical hemolytic-uremic syndrome. (Funded by Alexion Pharmaceuticals; C08-002 ClinicalTrials.gov numbers, NCT00844545 [adults] and NCT00844844 [adolescents]; C08-003 ClinicalTrials.gov numbers, NCT00838513 [adults] and NCT00844428 [adolescents]).


Pediatric Nephrology | 2009

Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome.

Gema Ariceta; Nesrin Besbas; Sally Johnson; Diana Karpman; Daniel Landau; Christoph Licht; Chantal Loirat; Carmine Pecoraro; C. Mark Taylor; Nicole C. A. J. van de Kar; Johan VandeWalle; Lothar Bernd Zimmerhackl

This guideline for the investigation and initial treatment of atypical hemolytic uremic syndrome (HUS) is intended to offer an approach based on opinion, as evidence is lacking. It builds on the current ability to identify the etiology of specific diagnostic sub-groups of HUS. HUS in children is mostly due to infection, enterohemorrhagic Escherichia coli (EHEC), Shigella dysenteriae type 1 in some geographic regions, and invasive Streptococcus pneumoniae. These sub-groups are relatively straightforward to diagnose. Their management, which is outside the remit of this guideline, is related to control of infection where that is necessary and supportive measures for the anemia and acute renal failure. A thorough investigation of the remainder of childhood HUS cases, commonly referred to as “atypical” HUS, will reveal a risk factor for the syndrome in approximately 60% of cases. Disorders of complement regulation are, numerically, the most important. The outcome for children with atypical HUS is poor, and, because of the rarity of these disorders, clinical experience is scanty. Some cases of complement dysfunction appear to respond to plasma therapy. The therapeutic part of this guideline is the consensus of the contributing authors and is based on limited information from uncontrolled studies. The guideline proposes urgent and empirical plasmapheresis replacement with whole plasma fraction for the first month after diagnosis. This should only be undertaken in specialized pediatric nephrology centers where appropriate medical and nursing skills are available. The guideline includes defined terminology and audit points so that the early clinical effectiveness of the strategy can be evaluated.


Pediatric Research | 2001

Pathogenesis of Shiga toxin-associated hemolytic uremic syndrome

François Proulx; Ernest G. Seidman; Diana Karpman

The aim of this review is to examine recent advances in experimental and clinical research relevant to the pathogenesis of diarrhea-associated hemolytic uremic syndrome with special reference to histopathologic findings, virulence factors of Shiga toxin-producing Escherichia coli, the host response, and the prothrombotic state. Despite significant advances during the past decade, the exact mechanism by which Shiga toxin-producing E. coli leads to hemolytic uremic syndrome remains unclear. Factors such as Shiga toxin, lipopolysaccharide, the adhesins intimin and E. coli-secreted proteins A, B, and D, the 60-MD plasmid, and enterohemolysin likely contribute to the pathogenesis. Data on the inflammatory response of the host, including leukocytes and inflammatory mediators, are updated. The pathogenesis of the prothrombotic state leading to thrombocytopenia secondary to endothelial cell damage and platelet activation is also discussed. A hypothetical sequence of events from ingestion of the bacteria to the development of full-blown hemolytic uremic syndrome is proposed.


Pediatric Nephrology | 2016

An international consensus approach to the management of atypical hemolytic uremic syndrome in children

Chantal Loirat; Fadi Fakhouri; Gema Ariceta; Nesrin Besbas; Martin Bitzan; Anna Bjerre; Rosanna Coppo; Francesco Emma; Sally Johnson; Diana Karpman; Daniel Landau; Craig B. Langman; Anne Laure Lapeyraque; Christoph Licht; Carla M. Nester; Carmine Pecoraro; Magdalena Riedl; Nicole C. A. J. van de Kar; Johan Vande Walle; Marina Vivarelli; Véronique Frémeaux-Bacchi

Atypical hemolytic uremic syndrome (aHUS) emerged during the last decade as a disease largely of complement dysregulation. This advance facilitated the development of novel, rational treatment options targeting terminal complement activation, e.g., using an anti-C5 antibody (eculizumab). We review treatment and patient management issues related to this therapeutic approach. We present consensus clinical practice recommendations generated by HUS International, an international expert group of clinicians and basic scientists with a focused interest in HUS. We aim to address the following questions of high relevance to daily clinical practice: Which complement investigations should be done and when? What is the importance of anti-factor H antibody detection? Who should be treated with eculizumab? Is plasma exchange therapy still needed? When should eculizumab therapy be initiated? How and when should complement blockade be monitored? Can the approved treatment schedule be modified? What approach should be taken to kidney and/or combined liver–kidney transplantation? How should we limit the risk of meningococcal infection under complement blockade therapy? A pressing question today regards the treatment duration. We discuss the need for prospective studies to establish evidence-based criteria for the continuation or cessation of anticomplement therapy in patients with and without identified complement mutations.


Blood | 2011

Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli -induced hemolytic uremic syndrome

Anne-lie Ståhl; Lisa Sartz; Diana Karpman

Hemolytic uremic syndrome (HUS) is commonly associated with Shiga toxin (Stx)-producing Escherichia coli O157:H7 infection. This study examined patient samples for complement activation on leukocyte-platelet complexes and microparticles, as well as donor samples for Stx and lipopolysaccharide (O157LPS)-induced complement activation on platelet-leukocyte complexes and microparticles. Results, analyzed by flow cytometry, showed that whole blood from a child with HUS had surface-bound C3 on 30% of platelet-monocyte complexes compared with 14% after recovery and 12% in pediatric controls. Plasma samples from 12 HUS patients were analyzed for the presence of microparticles derived from platelets, monocytes, and neutrophils. Acute-phase samples exhibited high levels of platelet microparticles and, to a lesser extent, monocyte microparticles, both bearing C3 and C9. Levels decreased significantly at recovery. Stx or O157LPS incubated with donor whole blood increased the population of platelet-monocyte and platelet-neutrophil complexes with surface-bound C3 and C9, an effect enhanced by costimulation with Stx and O157LPS. Both Stx and O157LPS induced the release of C3- and C9-bearing microparticles from platelets and monocytes. Released microparticles were phagocytosed by neutrophils. The presence of complement on platelet-leukocyte complexes and microparticles derived from these cells suggests a role in the inflammatory and thrombogenic events that occur during HUS.


Pediatric Nephrology | 1995

Cytokines in childhood hemolytic uremic syndrome and thrombotic thrombocytopenic purpura

Diana Karpman; Annika Andreasson; Hans Thysell; Bernard S. Kaplan; Catharina Svanborg

Serum and urine cytokines were analyzed in children with hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Interleukin-6 (IL-6) was elevated in the serum of 33 of 35 children with HUS (94%) and in 2 of 2 children with recurrent TTP. Serum IL-6 was higher in children with HUS who developed anuria, extrarenal manifestations during the acute phase of illness and/or chronic renal sequelae. Tumor necrosis factor-α (TNF-α) was detected in the serum of 7 patients with HUS (20%) and 1 patient with TTP. IL-6 and TNF-α were elevated in the urine of 4 of 4 children with HUS and 2 of 2 children with TTP. Urinary levels were higher than serum levels, suggesting local production of cytokines in the urinary tract. Sequential serum and urine samples showed that IL-6 levels varied with disease activity. IL-6 and TNF-α were not detected in the serum (n=25) and urine (n=15) of healthy children. We conclude that IL-6 in urine may be used to monitor disease activity in HUS and TTP.


Blood | 2008

Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation.

Anne-lie Ståhl; Fariba Vaziri-Sani; Stefan Heinen; Ann-Charlotte Kristoffersson; Karl-Henrik Gydell; Reem Raafat; Alberto Gutierrez; Ortraud Beringer; Peter F. Zipfel; Diana Karpman

Atypical hemolytic uremic syndrome (aHUS) may be associated with mutations in the C-terminal of factor H (FH). FH binds to platelets via the C-terminal as previously shown using a construct consisting of short consensus repeats (SCRs) 15 to 20. A total of 4 FH mutations, in SCR15 (C870R) and SCR20 (V1168E, E1198K, and E1198Stop) in patients with aHUS, were studied regarding their ability to allow complement activation on platelet surfaces. Purified FH-E1198Stop mutant exhibited reduced binding to normal washed platelets compared with normal FH, detected by flow cytometry. Washed platelets taken from the 4 patients with aHUS during remission exhibited C3 and C9 deposition, as well as CD40-ligand (CD40L) expression indicating platelet activation. Combining patient serum/plasma with normal washed platelets led to C3 and C9 deposition, CD40L and CD62P expression, aggregate formation, and generation of tissue factor-expressing microparticles. Complement deposition and platelet activation were reduced when normal FH was preincubated with platelets and were minimal when using normal serum. The purified FH-E1198Stop mutant added to FH-deficient plasma (complemented with C3) allowed considerable C3 deposition on washed platelets, in comparison to normal FH. In summary, mutated FH enables complement activation on the surface of platelets and their activation, which may contribute to the development of thrombocytopenia in aHUS.


PLOS ONE | 2007

A genetic basis of susceptibility to acute pyelonephritis.

Ann-Charlotte Lundstedt; Shane McCarthy; Mattias C. U. Gustafsson; Gabriela Godaly; Ulf Jodal; Diana Karpman; Irene Leijonhufvud; Carin Lindén; Jeanette Martinell; Bryndís Ragnarsdóttir; Martin Samuelsson; Lennart Truedsson; Björn Andersson; Catharina Svanborg

Background For unknown reasons, urinary tract infections (UTIs) are clustered in certain individuals. Here we propose a novel, genetically determined cause of susceptibility to acute pyelonephritis, which is the most severe form of UTI. The IL-8 receptor, CXCR1, was identified as a candidate gene when mIL-8Rh mutant mice developed acute pyelonephritis (APN) with severe tissue damage. Methods and Findings We have obtained CXCR1 sequences from two, highly selected APN prone patient groups, and detected three unique mutations and two known polymorphisms with a genotype frequency of 23% and 25% compared to 7% in controls (p<0.001 and p<0.0001, respectively). When reflux was excluded, 54% of the patients had CXCR1 sequence variants. The UTI prone children expressed less CXCR1 protein than the pediatric controls (p<0.0001) and two sequence variants were shown to impair transcription. Conclusions The results identify a genetic innate immune deficiency, with a strong link to APN and renal scarring.


The Journal of Infectious Diseases | 2007

Reduced Toll-Like Receptor 4 Expression in Children with Asymptomatic Bacteriuria

Bryndís Ragnarsdóttir; Martin Samuelsson; Mattias C. U. Gustafsson; Irene Leijonhufvud; Diana Karpman; Catharina Svanborg

Toll-like receptor (TLR) 4 is essential for the defense against infection with gram-negative pathogens, but reduced TLR4 expression has not been linked to altered disease susceptibility in humans. In mice, Tlr4 controls the mucosal response to Escherichia coli urinary tract infections. Inactivation of mouse Tlr4 causes an asymptomatic carrier state resembling asymptomatic bacteriuria (ABU). The present study compared neutrophil TLR4 expression levels between children with ABU (n=17) and age-matched control subjects (n=24), and significantly lower levels were detected in the patients with ABU. We also found elevated levels of the TLR4 adaptor protein TRIF and reduced levels of the TLR4-inhibitor SIGIRR in the patients with ABU, but MyD88 and TRAM levels were not significantly altered. Altered TLR4 and adaptor protein expression might impair TLR4 signaling and explain the weak mucosal response to urinary tract infection in patients who develop ABU rather than symptomatic disease.


PLOS ONE | 2009

Shiga Toxin and Lipopolysaccharide Induce Platelet-Leukocyte Aggregates and Tissue Factor Release, a Thrombotic Mechanism in Hemolytic Uremic Syndrome

Anne-lie Ståhl; Lisa Sartz; Anders Nelsson; Zivile D. Békássy; Diana Karpman

Background Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)–bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF. Methodology/Principal Findings The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF–expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery. Conclusions/Significance By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS.

Collaboration


Dive into the Diana Karpman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge