Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ida Arvidsson is active.

Publication


Featured researches published by Ida Arvidsson.


PLOS ONE | 2012

The Antimicrobial Peptide Cathelicidin Protects Mice from Escherichia coli O157:H7-Mediated Disease

Milan Chromek; Ida Arvidsson; Diana Karpman

This study investigated the role of the antimicrobial peptide cathelicidin in Escherichia coli O157:H7 infection and subsequent renal damage. Mouse and human cathelicidin, CRAMP and LL-37, respectively, killed E. coli O157:H7 in vitro. Intestines from healthy wild-type (129/SvJ) and cathelicidin-knock-out (Camp−/−) mice were investigated, showing that cathelicidin-deficient mice had a thinner colonic mucus layer compared with wild-type mice. Wild-type (n = 11) and cathelicidin-knock-out (n = 11) mice were inoculated with E. coli O157:H7. Cathelicidin-deficient animals exhibited higher fecal counts of E. coli O157:H7 and bacteria penetrated the mucus forming attaching-and-effacing lesions to a much higher extent than in wild-type animals. Cathelicidin knock-out mice developed symptoms (9/11) as well as anemia, thrombocytopenia and extensive renal tubular damage while all cathelicidin-producing mice remained asymptomatic with normal laboratory findings. When injected with Shiga toxin intraperitoneally, both murine strains developed the same degree of renal tubular damage and clinical disease indicating that differences in sensitivity to infection between the murine strains were related to the initial intestinal response. In conclusion, cathelicidin substantially influenced the antimicrobial barrier in the mouse colon mucosa. Cathelicidin deficiency lead to increased susceptibility to E. coli O157:H7 infection and subsequent renal damage. Administration of cathelicidin or stimulation of endogenous production may prove to be novel treatments for E. coli O157:H7-induced hemolytic uremic syndrome.


PLOS Pathogens | 2015

A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles

Anne-lie Ståhl; Ida Arvidsson; Karl Johansson; Milan Chromek; Johan Rebetz; Sebastian Loos; Ann-Charlotte Kristoffersson; Zivile D. Békássy; Matthias Mörgelin; Diana Karpman

Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.


Journal of Immunology | 2015

Shiga Toxin–Induced Complement-Mediated Hemolysis and Release of Complement-Coated Red Blood Cell–Derived Microvesicles in Hemolytic Uremic Syndrome

Ida Arvidsson; Anne-lie Ståhl; Minola Manea Hedström; Ann-Charlotte Kristoffersson; Christian Rylander; Julia S. Westman; Jill R. Storry; Martin L. Olsson; Diana Karpman

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1k and P2k phenotype RBCs, expressing high levels of the Pk Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS.


Journal of The American Society of Nephrology | 2013

Ouabain Protects against Shiga Toxin–Triggered Apoptosis by Reversing the Imbalance between Bax and Bcl-xL

Ievgeniia Burlaka; Xiao Li Liu; Johan Rebetz; Ida Arvidsson; Liping Yang; Hjalmar Brismar; Diana Karpman; Anita Aperia

Hemolytic uremic syndrome, a life-threatening disease often accompanied by acute renal failure, usually occurs after gastrointestinal infection with Shiga toxin 2 (Stx2)-producing Escherichia coli. Stx2 binds to the glycosphingolipid globotriaosylceramide receptor, expressed by renal epithelial cells, and triggers apoptosis by activating the apoptotic factor Bax. Signaling via the ouabain/Na,K-ATPase/IP3R/NF-κB pathway increases expression of Bcl-xL, an inhibitor of Bax, suggesting that ouabain might protect renal cells from Stx2-triggered apoptosis. Here, exposing rat proximal tubular cells to Stx2 in vitro resulted in massive apoptosis, upregulation of the apoptotic factor Bax, increased cleaved caspase-3, and downregulation of the survival factor Bcl-xL; co-incubation with ouabain prevented all of these effects. Ouabain activated the NF-κB antiapoptotic subunit p65, and the inhibition of p65 DNA binding abolished the antiapoptotic effect of ouabain in Stx2-exposed tubular cells. Furthermore, in vivo, administration of ouabain reversed the imbalance between Bax and Bcl-xL in Stx2-treated mice. Taken together, these results suggest that ouabain can protect the kidney from the apoptotic effects of Stx2.


Journal of Internal Medicine | 2017

Haemolytic uraemic syndrome

Diana Karpman; Sebastian Loos; Ramesh Tati; Ida Arvidsson

Haemolytic uraemic syndrome (HUS) is defined by the simultaneous occurrence of nonimmune haemolytic anaemia, thrombocytopenia and acute renal failure. This leads to the pathological lesion termed thrombotic microangiopathy, which mainly affects the kidney, as well as other organs. HUS is associated with endothelial cell injury and platelet activation, although the underlying cause may differ. Most cases of HUS are associated with gastrointestinal infection with Shiga toxin‐producing enterohaemorrhagic Escherichia coli (EHEC) strains. Atypical HUS (aHUS) is associated with complement dysregulation due to mutations or autoantibodies. In this review, we will describe the causes of HUS. In addition, we will review the clinical, pathological, haematological and biochemical features, epidemiology and pathogenetic mechanisms as well as the biochemical, microbiological, immunological and genetic investigations leading to diagnosis. Understanding the underlying mechanisms of the different subtypes of HUS enables tailoring of appropriate treatment and management. To date, there is no specific treatment for EHEC‐associated HUS but patients benefit from supportive care, whereas patients with aHUS are effectively treated with anti‐C5 antibody to prevent recurrences, both before and after renal transplantation.


Advances in Experimental Medicine and Biology | 2015

Complement Interactions with Blood Cells, Endothelial Cells and Microvesicles in Thrombotic and Inflammatory Conditions.

Diana Karpman; Anne-lie Ståhl; Ida Arvidsson; Karl Johansson; Sebastian Loos; Ramesh Tati; Zivile D. Békássy; Ann-Charlotte Kristoffersson; Maria Mossberg; Robin Kahn

The complement system is activated in the vasculature during thrombotic and inflammatory conditions. Activation may be associated with chronic inflammation on the endothelial surface leading to complement deposition. Complement mutations allow uninhibited complement activation to occur on platelets, neutrophils, monocytes, and aggregates thereof, as well as on red blood cells and endothelial cells. Furthermore, complement activation on the cells leads to the shedding of cell derived-microvesicles that may express complement and tissue factor thus promoting inflammation and thrombosis. Complement deposition on red blood cells triggers hemolysis and the release of red blood cell-derived microvesicles that are prothrombotic. Microvesicles are small membrane vesicles ranging from 0.1 to 1 μm, shed by cells during activation, injury and/or apoptosis that express components of the parent cell. Microvesicles are released during inflammatory and vascular conditions. The repertoire of inflammatory markers on endothelial cell-derived microvesicles shed during inflammation is large and includes complement. These circulating microvesicles may reflect the ongoing inflammatory process but may also contribute to its propagation. This overview will describe complement activation on blood and endothelial cells and the release of microvesicles from these cells during hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and vasculitis, clinical conditions associated with enhanced thrombosis and inflammation.


Infection and Immunity | 2011

Cross-Reactive Protection against Enterohemorrhagic Escherichia coli Infection by Enteropathogenic E. coli in a Mouse Model

Carla Calderon Toledo; Ida Arvidsson; Diana Karpman

ABSTRACT Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.


Nature Reviews Nephrology | 2017

Extracellular vesicles in renal disease

Diana Karpman; Anne lie Ståhl; Ida Arvidsson

Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell–cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.


Journal of Immunology | 2016

Early Terminal Complement Blockade and C6 Deficiency Are Protective in Enterohemorrhagic Escherichia coli-Infected Mice.

Ida Arvidsson; Johan Rebetz; Sebastian Loos; Maria Herthelius; Ann Charlotte Kristoffersson; Elisabet Englund; Milan Chromek; Diana Karpman

Complement activation occurs during enterohemorrhagic Escherichia coli (EHEC) infection and may exacerbate renal manifestations. In this study, we show glomerular C5b-9 deposits in the renal biopsy of a child with EHEC-associated hemolytic uremic syndrome. The role of the terminal complement complex, and its blockade as a therapeutic modality, was investigated in a mouse model of E. coli O157:H7 infection. BALB/c mice were treated with monoclonal anti-C5 i.p. on day 3 or 6 after intragastric inoculation and monitored for clinical signs of disease and weight loss for 14 d. All infected untreated mice (15 of 15) or those treated with an irrelevant Ab (8 of 8) developed severe illness. In contrast, only few infected mice treated with anti-C5 on day 3 developed symptoms (three of eight, p < 0.01 compared with mice treated with the irrelevant Ab on day 3) whereas most mice treated with anti-C5 on day 6 developed symptoms (six of eight). C6-deficient C57BL/6 mice were also inoculated with E. coli O157:H7 and only 1 of 14 developed disease, whereas 10 of 16 wild-type mice developed weight loss and severe disease (p < 0.01). Complement activation via the terminal pathway is thus involved in the development of disease in murine EHEC infection. Early blockade of the terminal complement pathway, before the development of symptoms, was largely protective, whereas late blockade was not. Likewise, lack of C6, and thereby deficient terminal complement complex, was protective in murine E. coli O157:H7 infection.


Proceedings of SPIE | 2017

Automatic Gleason grading of H and E stained microscopic prostate images using deep convolutional neural networks

Anna Gummeson; Ida Arvidsson; Mattias Ohlsson; Niels Christian Overgaard; Agnieszka Krzyzanowska; Anders Heyden; Anders Bjartell; Kalle Åström

Prostate cancer is the most diagnosed cancer in men. The diagnosis is confirmed by pathologists based on ocular inspection of prostate biopsies in order to classify them according to Gleason score. The main goal of this paper is to automate the classification using convolutional neural networks (CNNs). The introduction of CNNs has broadened the field of pattern recognition. It replaces the classical way of designing and extracting hand-made features used for classification with the substantially different strategy of letting the computer itself decide which features are of importance. For automated prostate cancer classification into the classes: Benign, Gleason grade 3, 4 and 5 we propose a CNN with small convolutional filters that has been trained from scratch using stochastic gradient descent with momentum. The input consists of microscopic images of haematoxylin and eosin stained tissue, the output is a coarse segmentation into regions of the four different classes. The dataset used consists of 213 images, each considered to be of one class only. Using four-fold cross-validation we obtained an error rate of 7.3%, which is significantly better than previous state of the art using the same dataset. Although the dataset was rather small, good results were obtained. From this we conclude that CNN is a promising method for this problem. Future work includes obtaining a larger dataset, which potentially could diminish the error margin.

Collaboration


Dive into the Ida Arvidsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milan Chromek

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge