Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana L. Kleiman de Pisarev is active.

Publication


Featured researches published by Diana L. Kleiman de Pisarev.


Toxicology and Applied Pharmacology | 2013

Action of hexachlorobenzene on tumor growth and metastasis in different experimental models.

Carolina Pontillo; Florencia Chiappini; Gonzalo Ricardo Sequeira; Claudia Cocca; Máximo Crocci; Lucas L. Colombo; Claudia Lanari; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression.


Journal of Applied Toxicology | 2000

Reproductive effects of hexachlorobenzene in female rats

Laura Alvarez; Andrea Randi; Paula Alvarez; Gerardo Piroli; Astrid Chamson-Reig; Victoria Lux-Lantos; Diana L. Kleiman de Pisarev

Hexachlorobenzene (HCB) is a polyhalogenated aromatic hydrocarbon widely distributed in the environment. In animal testing, HCB has been shown to be a reproductive toxin. Previous investigations of the effects of HCB on ovarian function have yielded equivocal results. Thus, the effects of chronic administration of HCB (1 g kg−1 body wt.) on the ovary and pituitary hormone levels, hepatic and uterine oestradiol receptors, ovarian histopathological changes and oestrus cycle characteristics were investigated in spontaneously cycling rats. Our data demonstrate that HCB treatment, under the conditions of the present study, reduced circulating levels of oestradiol and prolactin without differences in serum concentrations of progesterone. Follicle‐stimulating hormone serum levels were elevated. Hexachlorobenzene treatment resulted in irregularity of cycles, characterized mainly as prolonged periods of oestrus with a reduced number of ova recovered.


Toxicology Letters | 2008

Hexachlorobenzene triggers AhR translocation to the nucleus, c-Src activation and EGFR transactivation in rat liver.

Andrea Randi; Marcela Susana Sanchez; Laura Alvarez; Julián Cardozo; Carolina Pontillo; Diana L. Kleiman de Pisarev

Hexachlorobenzene (HCB) is a widespread environmental pollutant. It has some properties that are typical for dioxin-like compounds that act mainly through the aryl hydrocarbon receptor (AhR) protein. Upon dioxin binding, the AhR translocates to the nucleus and modulates gene expression. At the same time, c-Src kinase frees from the AhR complex and thereby activates its own kinase activity, which acts as a trigger for the growth factor receptor signal transduction pathway. HCB is a weak agonist of the AhR, and the evidence that HCB toxicity is mediated via the AhR complex is limited and inconclusive. In the present study, female Wistar rats were administered HCB (1, 10 and 100mg/kg) for 30 days. Liver cytosolic AhR was translocated to the nucleus. The activity of liver microsomal c-Src increased at all assayed doses. HCB induced the association of the EGFR with c-Src and increased the phosphorylation of EGFR at tyrosine 845 (Tyr845), a known c-Src phosphorylation site. c-Src from WB-F344 cells treated with HCB exhibited increased protein levels and c-Src-pTyr416 phosphorylation than the control cells. Again HCB induced EGFR phosphorylation at Tyr845. Such an effect of HCB could not be detected when c-Src activity was blocked by PP2. All together, our data demonstrates that HCB may induce EGFR transactivation through an c-Src-dependent pathway.


Toxicological Sciences | 2011

Activation of c-Src/HER1/STAT5b and HER1/ERK1/2 Signaling Pathways and Cell Migration by Hexachlorobenzene in MDA-MB-231 Human Breast Cancer Cell Line

Carolina Pontillo; María Alejandra García; Delfina Peña; Claudia Cocca; Florencia Chiappini; Laura Alvarez; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is a widespread environmental pollutant. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR) protein. HCB is a tumor cocarcinogen in rat mammary gland and an inducer of cell proliferation and c-Src kinase activity in MCF-7 breast cancer cells. This study was carried out to investigate HCB action on c-Src and the human epidermal growth factor receptor (HER1) activities and their downstream signaling pathways, Akt, extracellular-signal-regulated kinase (ERK1/2), and signal transducers and activators of transcription (STAT) 5b, as well as on cell migration in a human breast cancer cell line, MDA-MB-231. We also investigated whether the AhR is involved in HCB-induced effects. We have demonstrated that HCB (0.05μM) produces an early increase of Y416-c-Src, Y845-HER1, Y699-STAT5b, and ERK1/2 phosphorylation. Moreover, our results have shown that the pesticide (15 min) activates these pathways in a dose-dependent manner (0.005, 0.05, 0.5, and 5μM). In contrast, HCB does not alter T308-Akt activation. Pretreatment with a specific inhibitor for c-Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine [PP2]) prevents Y845-HER1 and Y699-STAT5b phosphorylation. AG1478, a specific HER1 inhibitor, abrogates HCB-induced STAT5b and ERK1/2 activation, whereas 4,7-orthophenanthroline and α-naphthoflavone, two AhR antagonists, prevent HCB-induced STAT5b and ERK1/2 phosphorylation. HCB enhances cell migration evaluated by scratch motility and transwell assays. Pretreatment with PP2, AG1478, and 4,7-orthophenanthroline suppresses HCB-induced cell migration. These results demonstrate that HCB stimulates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways in MDA-MB-231. c-Src, HER1, and AhR are involved in HCB-induced increase in cell migration. The present study makes a significant contribution to the molecular mechanism of action of HCB in mammary carcinogenesis.


Toxicology Letters | 2010

Hexachlorobenzene induces cell proliferation and IGF-I signaling pathway in an estrogen receptor α-dependent manner in MCF-7 breast cancer cell line

María Alejandra García; Delfina Peña; Laura Alvarez; Claudia Cocca; Carolina Pontillo; Rosa Bergoc; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the biosphere. ERalpha regulates the expression of genes involved in growth and development, and plays an important role in breast cancer. The present study focuses attention on the effect of HCB (0.005, 0.05, 0.5, 5 microM) on cell proliferation in estrogen receptor alpha (ERalpha)(+) MCF-7, and ERalpha(-) MDA-MB-231 breast cancer cell lines. We also studied the insulin growth factor-I (IGF-I) signaling pathway in MCF-7 cells. HCB (0.005 and 0.05 microM) stimulated cell proliferation in MCF-7, but not in MDA-MB-231 cells. The pesticide increased apoptosis in MCF-7, at HCB (0.5 and 5 microM). At these doses, HCB induced the expression of the aryl hydrocarbon receptor (AhR)-regulated gene cytochrome P4501A1. MCF-7 cells exposed to HCB (0.005 and 0.05 microM) overexpressed IGF-IR and insulin receptor (IR). IRS-1-phosphotyrosine content was increased in a dose dependent manner. ICI 182,780 prevented HCB-induced cell proliferation and IGF-I signaling in MCF-7 cells incubated in phenol-red free media. In addition, HCB (0.005 microM) increased c-Src activation, Tyr537-ERalpha phosphorylation and ERalpha down-regulation. Taken together, our data indicate that HCB stimulation of cell proliferation and IGF-I signaling is ERalpha dependent in MCF-7 cells.


Toxicology | 2012

Alterations in c-Src/HER1 and estrogen receptor α signaling pathways in mammary gland and tumors of hexachlorobenzene-treated rats.

Delfina Peña; Carolina Pontillo; María Alejandra García; Claudia Cocca; Laura Alvarez; Florencia Chiappini; Nadia Bourguignon; Isabel Frahm; Rosa Bergoc; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is an organochlorine pesticide that acts as an endocrine disruptor in humans and rodents. The development of breast cancer strongly depends on endocrine conditions modulated by environmental factors. We have demonstrated that HCB is a tumor co-carcinogen in rats and an inducer of proliferation in MCF-7 cells, in an estrogen receptor α (ERα)-dependent manner, and of migration in MDA-MB-231 breast cancer cell line. In the present study, we examined HCB effect on c-Src/human epidermal growth factor receptor (HER1) and ERα signaling pathways in mammary glands and in N-nitroso-N-methylurea (NMU)-induced mammary tumors in rats. Furthermore, we evaluated histopathological changes and serum hormone levels. Rats were separated into four groups: control, HCB (100 mg/kg b.w.), NMU (50 mg/kg b.w.) and NMU-HCB. Our data show that HCB increases c-Src and HER1 activation, c-Src/HER1 association, and Y699-STAT5b and ERK1/2 phosphorylation in mammary glands. HCB also enhances Y537-ERα phosphorylation and ERα/c-Src physical interaction. In tumors, HCB also induces c-Src and HER1 activation, c-Src/HER1 association, as well as T308-Akt and Y699-STAT5b phosphorylation. In addition, the pesticide increases ERα protein content and decreases p-Y537-ERα levels and ERα/c-Src association in tumors. HCB increases serum 17-beta estradiol and prolactin contents and decreases progesterone, FSH and LH levels in rats without tumors, while the opposite effect was observed in rats with tumors. Taken together, our results indicate that HCB induces an estrogenic effect in mammary gland, increasing c-Src/HER1 and ERα signaling pathways. HCB stimulates c-Src/HER1 pathway, but decreases ERα activity in tumors, appearing to shift them towards a higher malignancy phenotype.


Toxicology | 2011

Hexachlorobenzene induces deregulation of cellular growth in rat liver.

Laura Giribaldi; Florencia Chiappini; Carolina Pontillo; Andrea Randi; Diana L. Kleiman de Pisarev; Laura Alvarez

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the biosphere. The aim of the present study was to investigate the effect of HCB on the homeostasis of liver cell growth, analyzing parameters of cell proliferation and apoptosis, in HCB (0.1, 1, 10 and 100 mg/kg body weight)-treated rats, during 4 weeks. Cell proliferation and ERK1/2 phosphorylation, associated with survival mechanisms, were increased at HCB 100 mg/kg. The pesticide increased the number of apoptotic cells, and the activation of caspase-3, -9 and -8, in a dose-dependent manner, suggesting that HCB-induced apoptosis is mediated by caspases. Increased Fas and FasL protein levels indicate that the death receptor pathway is also involved. This process is associated with decreased Bid, and increased cytosolic cytochrome c protein levels. Transforming growth factor-beta1 (TGF-β1) intervenes in apoptotic and/or proliferative processes in hepatocytes. TGF-β1 cDNA and protein levels are dose-dependently increased, suggesting that this cytokine might be involved in HCB-induced dysregulation of cell proliferation and apoptosis. In conclusion, this study reports for the first time that HCB induces loss of the homeostatic balance between cell growth and cell death in rat liver. Induced apoptosis occurs by mechanisms involving signals emanating from death receptors, and the mitochondrial pathway.


Endocrinology | 1999

Hexachlorobenzene, a dioxin-type compound, increases malic enzyme gene transcription through a mechanism involving the thyroid hormone response element

Andrea Loaiza-Perez; Maria-Teresa Seisdedos; Diana L. Kleiman de Pisarev; Horacio Alberto Sancovich; Andrea Randi; Ana María Ferramola de Sancovich; Pilar Santisteban

Hexachlorobenzene (HCB) is a dioxin-type chemical that acts mainly through the aryl hydrocarbon receptor. Chronic exposure of rats to HCB increases the activity of malic enzyme (ME). In this report, we show that this increase is correlated with an induction of ME messenger RNA (mRNA) levels, with the maximal HCB effect achieved after 9 days of intoxication. This effect is specific for ME, as other liver enzymes, such as glyceraldehyde-3-phosphate dehydrogenase, phosphoenol pyruvate carboxykinase, and mitochondrial α-glycerol-3-phosphate dehydrogenase, are not affected by HCB. The induction of ME mRNA levels is accompanied by an increase in ME promoter activity, as demonstrated by transient transfection experiments performed in rat hepatoma H35 cells. In an attempt to identify the cis-regulatory elements responsible for the HCB effect, different promoter deletions and mutations were used. The results obtained localize the responsive region between positions −315 and −177. This region does not contain eithe...


Biochemical Pharmacology | 2003

Effect of in vivo administered hexachlorobenzene on epidermal growth factor receptor levels, protein tyrosine kinase activity, and phosphotyrosine content in rat liver.

Andrea Randi; Horacio A. Sancovich; Ana Maria Ferramola de Sancovich; Andrea Loaiza; Rodolfo A Kölliker Frers; Fernanda Spinelli; Diana L. Kleiman de Pisarev

In the present study, the effects of hexachlorobenzene (HCB) on epidermal growth factor receptor (EGFR) content of liver microsomes and plasma membrane, and on EGFR-tyrosine kinase activity in the microsomal fraction were investigated. In addition, we studied the parameters of the tyrosine kinase signalling pathway such as protein tyrosine kinase (PTK) activity and phosphotyrosine content in microsomal and cytosolic protein. To determine whether the observed alterations were correlated with a manifestation of overt toxicity, a single very low dose of HCB (1mg/kg body wt) and two much higher doses (100 and 1000 mg/kg body wt), the highest being toxicologically significant in that it reduced serum thyroxine (T(4)) and inhibited uroporphyrinogen decarboxylase (URO-D) (EC 4.1.1.37) activity, were tested. Our results demonstrated that liver microsomes of rats treated with HCB had higher levels of EGFR than untreated rats; treated rats also had less EGFR present in hepatocyte plasma membrane fractions than did untreated rats. HCB altered the phosphotyrosine content and protein phosphorylation of some microsomal and cytosolic proteins in a biphasic dose-response relationship. At the low dose, phosphorylation and phosphotyrosine content of several microsomal proteins were increased; however, these effects were diminished or reversed at the higher doses. Our results suggest that chronic HCB treatment produces a down-regulation of the EGFR and a dose-dependent increase in EGFR-tyrosine kinase activity in the microsomal fraction. This effect may contribute to the alteration of membrane and cytosolic protein tyrosine phosphorylation. The level of sensitivity encountered in our studies is extraordinary, occurring at 1/10 to 1/1000 the doses of HCB known to cause other toxicological lesions.


Toxicological Sciences | 2013

Reactive Oxygen Species and Extracellular Signal-Regulated Kinase 1/2 Mediate Hexachlorobenzene-Induced Cell Death in FRTL-5 rat thyroid cells

Florencia Chiappini; Carolina Pontillo; Andrea Randi; Laura Alvarez; Diana L. Kleiman de Pisarev

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the environment. We have previously shown that chronic HCB exposure triggers apoptosis in rat thyroid follicular cells. This study was carried out to investigate the molecular mechanism by which the pesticide causes apoptosis in FRTL-5 rat thyroid cells exposed to HCB (0.005, 0.05, 0.5, and 5µM) for 2, 6, 8, 24, and 48h. HCB treatment lowered cell viability and induced apoptotic cell death in a dose- and time-dependent manner, as demonstrated by morphological nuclear changes and the increase of DNA fragmentation. The pesticide increased activation of caspases-3, -8, and full-length caspase-10 processing. HCB induced mitochondrial membrane depolarization, release of cytochrome c and apoptosis-inducing factor (AIF), from the mitochondria to the cytosol, and AIF nuclear translocation. Cell death was accompanied by an increase in reactive oxygen species (ROS) generation. Blocking of ROS production, with a radical scavenger (Trolox), resulted in inhibition of AIF nuclear translocation and returned cells survival to control levels, demonstrating that ROS are critical mediators of HCB-induced apoptosis. The pesticide increased ERK1/2, JNK, and p38 phosphorylation in a time- and dose-dependent manner. However, when FRTL-5 cells were treated with specific MAPK inhibitors, only blockade of MEK1/2 with PD98059 prevented cell loss of viability, as well as caspase-3 activation. In addition, we demonstrated that HCB-induced production of ROS has a critical role in ERK1/2 activation. These results demonstrate for the first time that HCB induces apoptosis in FRTL-5 cells, by ROS-mediated ERK1/2 activation, through caspase-dependent and -independent pathways.

Collaboration


Dive into the Diana L. Kleiman de Pisarev's collaboration.

Top Co-Authors

Avatar

Andrea Randi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Laura Alvarez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Carolina Pontillo

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Claudia Cocca

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delfina Peña

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noelia Miret

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Rosa Bergoc

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge