Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Pontillo is active.

Publication


Featured researches published by Carolina Pontillo.


Toxicology and Applied Pharmacology | 2013

Action of hexachlorobenzene on tumor growth and metastasis in different experimental models.

Carolina Pontillo; Florencia Chiappini; Gonzalo Ricardo Sequeira; Claudia Cocca; Máximo Crocci; Lucas L. Colombo; Claudia Lanari; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression.


Toxicology Letters | 2008

Hexachlorobenzene triggers AhR translocation to the nucleus, c-Src activation and EGFR transactivation in rat liver.

Andrea Randi; Marcela Susana Sanchez; Laura Alvarez; Julián Cardozo; Carolina Pontillo; Diana L. Kleiman de Pisarev

Hexachlorobenzene (HCB) is a widespread environmental pollutant. It has some properties that are typical for dioxin-like compounds that act mainly through the aryl hydrocarbon receptor (AhR) protein. Upon dioxin binding, the AhR translocates to the nucleus and modulates gene expression. At the same time, c-Src kinase frees from the AhR complex and thereby activates its own kinase activity, which acts as a trigger for the growth factor receptor signal transduction pathway. HCB is a weak agonist of the AhR, and the evidence that HCB toxicity is mediated via the AhR complex is limited and inconclusive. In the present study, female Wistar rats were administered HCB (1, 10 and 100mg/kg) for 30 days. Liver cytosolic AhR was translocated to the nucleus. The activity of liver microsomal c-Src increased at all assayed doses. HCB induced the association of the EGFR with c-Src and increased the phosphorylation of EGFR at tyrosine 845 (Tyr845), a known c-Src phosphorylation site. c-Src from WB-F344 cells treated with HCB exhibited increased protein levels and c-Src-pTyr416 phosphorylation than the control cells. Again HCB induced EGFR phosphorylation at Tyr845. Such an effect of HCB could not be detected when c-Src activity was blocked by PP2. All together, our data demonstrates that HCB may induce EGFR transactivation through an c-Src-dependent pathway.


Toxicological Sciences | 2011

Activation of c-Src/HER1/STAT5b and HER1/ERK1/2 Signaling Pathways and Cell Migration by Hexachlorobenzene in MDA-MB-231 Human Breast Cancer Cell Line

Carolina Pontillo; María Alejandra García; Delfina Peña; Claudia Cocca; Florencia Chiappini; Laura Alvarez; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is a widespread environmental pollutant. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR) protein. HCB is a tumor cocarcinogen in rat mammary gland and an inducer of cell proliferation and c-Src kinase activity in MCF-7 breast cancer cells. This study was carried out to investigate HCB action on c-Src and the human epidermal growth factor receptor (HER1) activities and their downstream signaling pathways, Akt, extracellular-signal-regulated kinase (ERK1/2), and signal transducers and activators of transcription (STAT) 5b, as well as on cell migration in a human breast cancer cell line, MDA-MB-231. We also investigated whether the AhR is involved in HCB-induced effects. We have demonstrated that HCB (0.05μM) produces an early increase of Y416-c-Src, Y845-HER1, Y699-STAT5b, and ERK1/2 phosphorylation. Moreover, our results have shown that the pesticide (15 min) activates these pathways in a dose-dependent manner (0.005, 0.05, 0.5, and 5μM). In contrast, HCB does not alter T308-Akt activation. Pretreatment with a specific inhibitor for c-Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine [PP2]) prevents Y845-HER1 and Y699-STAT5b phosphorylation. AG1478, a specific HER1 inhibitor, abrogates HCB-induced STAT5b and ERK1/2 activation, whereas 4,7-orthophenanthroline and α-naphthoflavone, two AhR antagonists, prevent HCB-induced STAT5b and ERK1/2 phosphorylation. HCB enhances cell migration evaluated by scratch motility and transwell assays. Pretreatment with PP2, AG1478, and 4,7-orthophenanthroline suppresses HCB-induced cell migration. These results demonstrate that HCB stimulates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways in MDA-MB-231. c-Src, HER1, and AhR are involved in HCB-induced increase in cell migration. The present study makes a significant contribution to the molecular mechanism of action of HCB in mammary carcinogenesis.


Toxicology Letters | 2010

Hexachlorobenzene induces cell proliferation and IGF-I signaling pathway in an estrogen receptor α-dependent manner in MCF-7 breast cancer cell line

María Alejandra García; Delfina Peña; Laura Alvarez; Claudia Cocca; Carolina Pontillo; Rosa Bergoc; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the biosphere. ERalpha regulates the expression of genes involved in growth and development, and plays an important role in breast cancer. The present study focuses attention on the effect of HCB (0.005, 0.05, 0.5, 5 microM) on cell proliferation in estrogen receptor alpha (ERalpha)(+) MCF-7, and ERalpha(-) MDA-MB-231 breast cancer cell lines. We also studied the insulin growth factor-I (IGF-I) signaling pathway in MCF-7 cells. HCB (0.005 and 0.05 microM) stimulated cell proliferation in MCF-7, but not in MDA-MB-231 cells. The pesticide increased apoptosis in MCF-7, at HCB (0.5 and 5 microM). At these doses, HCB induced the expression of the aryl hydrocarbon receptor (AhR)-regulated gene cytochrome P4501A1. MCF-7 cells exposed to HCB (0.005 and 0.05 microM) overexpressed IGF-IR and insulin receptor (IR). IRS-1-phosphotyrosine content was increased in a dose dependent manner. ICI 182,780 prevented HCB-induced cell proliferation and IGF-I signaling in MCF-7 cells incubated in phenol-red free media. In addition, HCB (0.005 microM) increased c-Src activation, Tyr537-ERalpha phosphorylation and ERalpha down-regulation. Taken together, our data indicate that HCB stimulation of cell proliferation and IGF-I signaling is ERalpha dependent in MCF-7 cells.


Molecular Immunology | 2010

Central role of extracellular signal-regulated kinase and Toll-like receptor 4 in IL-10 production in regulatory dendritic cells induced by Trypanosoma cruzi

Carolina V. Poncini; Guadalupe Giménez; Carolina Pontillo; Catalina D. Alba-Soto; E.L.D. Isola; Isabel Piazzon; Stella M. González Cappa

Several Trypanosoma cruzi molecules that stimulate macrophages activity were described as Toll-like receptor 2 (TLR2) ligands. Besides, the models of dendritic cells (DC) are poorly characterised. We have previously demonstrated that live-trypomastigotes (Tp) plus lipopolysaccharide (LPS) induce DC with tolerogenic properties that produce high levels of interleukin (IL)-10 and an impaired capacity to induce lymphoproliferation. Here, we show that the regulatory phenotype was observed with heat-killed trypomastigotes (Tphk) stimulation, ruling out DC infection. T. cruzi induced a particular DC activation state increasing LPS-activation of extracellular regulated kinase (ERK) 1/2 and signal transducer and activator of transcription (STAT) 3. Inhibition of ERK down-regulated IL-10 production and restored DC stimulatory capacity, showing the importance of this pathway in the DC modulation. A recent work shows that signalling via TLR4 and TLR2 induces a synergism in anti-inflammatory cytokine production in murine DC. Upon TLR2 and TLR4 stimulation using Pam(3)Cys or LPS and Tphk in DC from TLR2 knock out (KO) or TLR4-mutant mice, we showed that high levels of IL-10 were independent of TLR2 but associated with TLR4 and NF-kappaB signallization. Although sialic acid has been described as a molecule responsible of DC inhibition, we determine that it is not associated with T. cruzi-IL-10 modulatory response. In conclusion, all these findings demonstrate a key role of ERK and TLR4 in association with NF-kappaB in IL-10 modulation induced by T. cruzi and suggest that this regulatory effect involves parasite-DC interactions not described yet.


Toxicology | 2012

Alterations in c-Src/HER1 and estrogen receptor α signaling pathways in mammary gland and tumors of hexachlorobenzene-treated rats.

Delfina Peña; Carolina Pontillo; María Alejandra García; Claudia Cocca; Laura Alvarez; Florencia Chiappini; Nadia Bourguignon; Isabel Frahm; Rosa Bergoc; Diana L. Kleiman de Pisarev; Andrea Randi

Hexachlorobenzene (HCB) is an organochlorine pesticide that acts as an endocrine disruptor in humans and rodents. The development of breast cancer strongly depends on endocrine conditions modulated by environmental factors. We have demonstrated that HCB is a tumor co-carcinogen in rats and an inducer of proliferation in MCF-7 cells, in an estrogen receptor α (ERα)-dependent manner, and of migration in MDA-MB-231 breast cancer cell line. In the present study, we examined HCB effect on c-Src/human epidermal growth factor receptor (HER1) and ERα signaling pathways in mammary glands and in N-nitroso-N-methylurea (NMU)-induced mammary tumors in rats. Furthermore, we evaluated histopathological changes and serum hormone levels. Rats were separated into four groups: control, HCB (100 mg/kg b.w.), NMU (50 mg/kg b.w.) and NMU-HCB. Our data show that HCB increases c-Src and HER1 activation, c-Src/HER1 association, and Y699-STAT5b and ERK1/2 phosphorylation in mammary glands. HCB also enhances Y537-ERα phosphorylation and ERα/c-Src physical interaction. In tumors, HCB also induces c-Src and HER1 activation, c-Src/HER1 association, as well as T308-Akt and Y699-STAT5b phosphorylation. In addition, the pesticide increases ERα protein content and decreases p-Y537-ERα levels and ERα/c-Src association in tumors. HCB increases serum 17-beta estradiol and prolactin contents and decreases progesterone, FSH and LH levels in rats without tumors, while the opposite effect was observed in rats with tumors. Taken together, our results indicate that HCB induces an estrogenic effect in mammary gland, increasing c-Src/HER1 and ERα signaling pathways. HCB stimulates c-Src/HER1 pathway, but decreases ERα activity in tumors, appearing to shift them towards a higher malignancy phenotype.


Toxicology | 2011

Hexachlorobenzene induces deregulation of cellular growth in rat liver.

Laura Giribaldi; Florencia Chiappini; Carolina Pontillo; Andrea Randi; Diana L. Kleiman de Pisarev; Laura Alvarez

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the biosphere. The aim of the present study was to investigate the effect of HCB on the homeostasis of liver cell growth, analyzing parameters of cell proliferation and apoptosis, in HCB (0.1, 1, 10 and 100 mg/kg body weight)-treated rats, during 4 weeks. Cell proliferation and ERK1/2 phosphorylation, associated with survival mechanisms, were increased at HCB 100 mg/kg. The pesticide increased the number of apoptotic cells, and the activation of caspase-3, -9 and -8, in a dose-dependent manner, suggesting that HCB-induced apoptosis is mediated by caspases. Increased Fas and FasL protein levels indicate that the death receptor pathway is also involved. This process is associated with decreased Bid, and increased cytosolic cytochrome c protein levels. Transforming growth factor-beta1 (TGF-β1) intervenes in apoptotic and/or proliferative processes in hepatocytes. TGF-β1 cDNA and protein levels are dose-dependently increased, suggesting that this cytokine might be involved in HCB-induced dysregulation of cell proliferation and apoptosis. In conclusion, this study reports for the first time that HCB induces loss of the homeostatic balance between cell growth and cell death in rat liver. Induced apoptosis occurs by mechanisms involving signals emanating from death receptors, and the mitochondrial pathway.


Toxicological Sciences | 2013

Reactive Oxygen Species and Extracellular Signal-Regulated Kinase 1/2 Mediate Hexachlorobenzene-Induced Cell Death in FRTL-5 rat thyroid cells

Florencia Chiappini; Carolina Pontillo; Andrea Randi; Laura Alvarez; Diana L. Kleiman de Pisarev

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the environment. We have previously shown that chronic HCB exposure triggers apoptosis in rat thyroid follicular cells. This study was carried out to investigate the molecular mechanism by which the pesticide causes apoptosis in FRTL-5 rat thyroid cells exposed to HCB (0.005, 0.05, 0.5, and 5µM) for 2, 6, 8, 24, and 48h. HCB treatment lowered cell viability and induced apoptotic cell death in a dose- and time-dependent manner, as demonstrated by morphological nuclear changes and the increase of DNA fragmentation. The pesticide increased activation of caspases-3, -8, and full-length caspase-10 processing. HCB induced mitochondrial membrane depolarization, release of cytochrome c and apoptosis-inducing factor (AIF), from the mitochondria to the cytosol, and AIF nuclear translocation. Cell death was accompanied by an increase in reactive oxygen species (ROS) generation. Blocking of ROS production, with a radical scavenger (Trolox), resulted in inhibition of AIF nuclear translocation and returned cells survival to control levels, demonstrating that ROS are critical mediators of HCB-induced apoptosis. The pesticide increased ERK1/2, JNK, and p38 phosphorylation in a time- and dose-dependent manner. However, when FRTL-5 cells were treated with specific MAPK inhibitors, only blockade of MEK1/2 with PD98059 prevented cell loss of viability, as well as caspase-3 activation. In addition, we demonstrated that HCB-induced production of ROS has a critical role in ERK1/2 activation. These results demonstrate for the first time that HCB induces apoptosis in FRTL-5 cells, by ROS-mediated ERK1/2 activation, through caspase-dependent and -independent pathways.


Toxicology Letters | 2014

Hexachlorobenzene induces TGF-β1 expression, which is a regulator of p27 and cyclin D1 modifications.

Florencia Chiappini; Carolina Pontillo; Andrea Randi; Laura Alvarez; Diana L. Kleiman de Pisarev

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the environment. In this study we have demonstrated that HCB induced loss of cell viability and alterations in cell cycle regulation in FRTL-5 rat thyroid cells. Analysis of cell cycle distribution by flow cytometric analysis demonstrated that HCB induced cell cycle arrest at G2/M and at G0/G1 phase, inhibiting cell cycle progression at the G1/S phase, after 24 h and 72 h of treatment. HCB-treatment resulted in an increase in transforming growth factor-beta (TGF-β1) mRNA levels, a negative regulator of cell growth in thyroid epithelial cells. Time-dependent studies showed that both cytosolic and nuclear p27 protein levels were increased by 5 μM HCB. After 24 h of treatment, total p27 in whole cells lysate was increased. Dose-dependent studies, demonstrated that HCB (0.005, 0.05, 0.5 and 5 μM) increased p27, both in the cytosol and nucleus. HCB (5 μM) induced a concomitant decrease in nuclear cyclin D1 protein levels, in a time-dependent manner. We have also demonstrated that TGF-β1 Smad signaling is involved in HCB-induced alterations of p27 and cyclin D1 protein levels. On the other hand, ERK1/2 activation is not involved in the alteration of cell cycle regulatory proteins.


Toxicology Letters | 2017

Hexachlorobenzene alters cell cycle by regulating p27-cyclin E-CDK2 and c-Src-p27 protein complexes

Clara Ventura; Mariel Núñez; V. Gaido; Carolina Pontillo; Noelia Miret; Andrea Randi; Claudia Cocca

Hexachlorobenzene (HCB) is an organochlorine pollutant widely distributed in the environment around the entire world. Previous reports from our group and others have demonstrated that this compound is as an endocrine disruptor. We have also reported that HCB presents a co-carcinogenic effect in N-Nitroso-N-methyl-urea-induced mammary tumours in rats. In this work, we studied the effects of HCB on cell cycle progression and cell cycle regulating protein expression in the estrogen-sensitive breast cancer cell line, MCF-7. Here, we show that HCB alters cell cycle in a concentration-dependent way. The lowest assessed concentration (0.005μM) promotes the cell cycle progression, enhances cyclin D1 expression, and reduces the nuclear localization of p27 accompanied by an increased interaction between p27 and c-Src kinase. On the other hand, 5μM HCB delays the cell cycle progression and promotes the formation of the cyclin E-CDK2-p27 protein complex. Our results show that HCB stimulates cell proliferation through cell cycle modulation and c-Src involvement in MCF-7 cells. Here, we report for the first time that differential mechanisms of action of HCB on mammary cell cycle progression are triggered at different concentrations of this pollutant.

Collaboration


Dive into the Carolina Pontillo's collaboration.

Top Co-Authors

Avatar

Andrea Randi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Cocca

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Laura Alvarez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noelia Miret

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Clara Ventura

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Delfina Peña

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge