Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Lieber is active.

Publication


Featured researches published by Diana Lieber.


PLOS Pathogens | 2017

A derivative of platelet-derived growth factor receptor alpha binds to the trimer of human cytomegalovirus and inhibits entry into fibroblasts and endothelial cells

Cora Stegmann; Daniel Hochdorfer; Diana Lieber; Narmadha Subramanian; Dagmar Stöhr; Kerstin Laib Sampaio; Christian Sinzger; Andrew D. Yurochko

Human cytomegalovirus (HCMV) is a widely distributed herpesvirus that causes significant morbidity in immunocompromised hosts. Inhibitors of viral DNA replication are available, but adverse effects limit their use. Alternative antiviral strategies may include inhibition of entry. We show that soluble derivatives of the platelet-derived growth factor receptor alpha (PDGFR-alpha), a putative receptor of HCMV, can inhibit HCMV infection of various cell types. A PDGFR-alpha-Fc fusion protein binds to and neutralizes cell-free virus particles at an EC50 of 10–30 ng/ml. Treatment of particles reduced both attachment to and fusion with cells. In line with the latter, PDGFR-alpha-Fc was also effective when applied postattachment. A peptide scan of the extracellular domain of PDGFR-alpha identified a 40mer peptide that inhibits infection at an EC50 of 1–2 nmol/ml. Both, peptide and fusion protein, were effective against various HCMV strains and are hence promising candidates for the development of novel anti-HCMV therapies.


Journal of Virology | 2016

Tetraspanin CD151 Promotes Initial Events in Human Cytomegalovirus Infection

Daniel Hochdorfer; Luise Florin; Christian Sinzger; Diana Lieber

ABSTRACT Human cytomegalovirus (HCMV), a betaherpesvirus, can cause life-threatening disease in immunocompromised individuals. Viral envelope glycoproteins that mediate binding to and penetration into target cells have been identified previously. In contrast, cellular proteins supporting HCMV during entry are largely unknown. In order to systematically identify host genes affecting initial steps of HCMV infection, a targeted RNA interference screen of 96 cellular genes was performed in endothelial cells by use of a virus strain expressing the full set of known glycoprotein H and L (gH/gL) complexes. The approach yielded five proviral host factors from different protein families and eight antiviral host factors, mostly growth factor receptors. The tetraspanin CD151 was uncovered as a novel proviral host factor and was analyzed further. Like endothelial cells, fibroblasts were also less susceptible to HCMV infection after CD151 depletion. Virus strains with different sets of gH/gL complexes conferring either broad or narrow cell tropism were equally impaired. Infection of CD151-depleted cells by a fluorescent virus with differentially labeled capsid and envelope proteins revealed a role of CD151 in viral penetration but not in adsorption to the cell. In conclusion, the tetraspanin CD151 has emerged as a novel host factor in HCMV entry and as a putative antiviral target. IMPORTANCE At present, the events at the virus-cell interface and the cellular proteins involved during the HCMV entry steps are scarcely understood. In this study, several host factors with putative roles in this process were identified. The tetraspanin CD151 was discovered as a previously unrecognized proviral host factor for HCMV and was found to support viral penetration into the target cells. The findings of this study shed light on the cellular contribution during the initial steps of HCMV infection and open a new direction in HCMV research.


BioTechniques | 2015

A permanently growing human endothelial cell line supports productive infection with human cytomegalovirus under conditional cell growth arrest.

Diana Lieber; Daniel Hochdorfer; Dagmar Stoehr; Axel Schubert; Ramin Lotfi; Tobias May; Dagmar Wirth; Christian Sinzger

Infection of vascular endothelial cells (ECs) is assumed to contribute to dissemination of human cytomegalovirus (HCMV). Investigation of virus-host interactions in ECs such as human umbilical vein endothelial cells (HUVECs) is limited due to the low maximal passage numbers of these primary cells. We tested a conditionally immortalized EC line (HEC-LTT) and a permanent cell line (EA.hy926) for their susceptibility to HCMV infection. Both cell lines resembled HUVECs in that they allowed for entry and immediate early protein expression of highly endotheliotropic HCMV strains but not of poorly endotheliotropic strains, rendering them suitable for analysis of the viral entry mechanism in ECs. The late phase of viral replication and release, however, was supported by growth-controlled HEC-LTT cells but not by EA.hy926 cells. HEC-LTT cells support both the early and late phase of viral replication and release infectious progeny virus at titers comparable to primary HUVECs; thus, the HEC-LTT cell line is a cell culture model representing the full viral replicative cycle of HCMV in ECs. The implementation of permanent HEC-LTT and EA.hy926 cell lines in HCMV research will facilitate long-term approaches that are not feasible in primary HUVECs.


Journal of Virological Methods | 2016

Generation of a Gaussia luciferase-expressing endotheliotropic cytomegalovirus for screening approaches and mutant analyses.

Jessica J. Falk; Kerstin Laib Sampaio; Cora Stegmann; Diana Lieber; Barbara Kropff; Michael Mach; Christian Sinzger

For many questions in human cytomegalovirus (HCMV) research, assays are desired that allow robust and fast quantification of infection efficiencies under high-throughput conditions. The secreted Gaussia luciferase has been demonstrated as a suitable reporter in the context of a fibroblast-adapted HCMV strain, which however is greatly restricted in the number of cell types to which it can be applied. We inserted the Gaussia luciferase expression cassette into the BAC-cloned virus strain TB40-BAC4, which displays the natural broad cell tropism of HCMV and hence allows application to screening approaches in a variety of cell types including fibroblasts, epithelial, and endothelial cells. Here, we applied the reporter virus TB40-BAC4-IE-GLuc to identify mouse hybridoma clones that preferentially neutralize infection of endothelial cells. In addition, as the Gaussia luciferase is secreted into culture supernatants from infected cells it allows kinetic analyses in living cultures. This can speed up and facilitate phenotypic characterization of BAC-cloned mutants. For example, we analyzed a UL74 stop-mutant of TB40-BAC4-IE-GLuc immediately after reconstitution in transfected cultures and found the increase of luciferase delayed and reduced as compared to wild type. Phenotypic monitoring directly in transfected cultures can minimize the risk of compensating mutations that might occur with extended passaging.


Biochemical Society Transactions | 2017

Tetraspanins in infections by human cytomegalo- and papillomaviruses

Laura Fast; Diana Lieber; Thorsten Lang; Luise Florin

Members of the tetraspanin family have been identified as essential cellular membrane proteins in infectious diseases by nearly all types of pathogens. The present review highlights recently published data on the role of tetraspanin CD151, CD81, and CD63 and their interaction partners in host cell entry by human cytomegalo- and human papillomaviruses. Moreover, we discuss a model for tetraspanin assembly into trafficking platforms at the plasma membrane. These platforms might persist during intracellular viral trafficking.


Methods of Molecular Biology | 2013

Generation of a Stable Cell Line for Constitutive miRNA Expression

Diana Lieber

miRNAs have in recent years emerged as novel players in virus-host interactions. While individual miRNAs are capable of regulating many targets simultaneously, not much is known about the role of distinct host or viral miRNAs in the context of infection. Analysis of the function of a miRNA is often hampered by the complexity of virus-host interactions and the enormous changes in the host cell during infection. Many viral miRNAs as for example from Kaposi sarcoma-associated Herpesvirus (KSHV) are probably exclusively expressed in latent infection. This might lead to a steady-state situation with offense and defense mechanisms counteracting each other. Cellular miRNAs involved in defense against pathogens on the other hand might be suppressed in infection. A cell culture system allowing for constitutive expression of individual miRNAs at high levels is a useful tool to enhance miRNA-specific functions and to uncouple viral miRNA function from other infection-related mechanisms. Here, a protocol is described to generate stable cell lines for constitutive expression of single cellular or viral miRNA precursors in absence of infection. The procedure comprises cloning of the precursor sequence, generation of the lentiviral expression vector, transduction of the cells of interest, selection for polyclonal cell lines, and isolation of monoclonal cell lines by limiting dilution.


PLOS ONE | 2015

The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a Proviral Fashion

Yolaine Cavignac; Diana Lieber; Kerstin Laib Sampaio; Johannes Madlung; Tobias Lamkemeyer; Gerhard Jahn; Alfred Nordheim; Christian Sinzger

While it is well established that human cytomegalovirus (HCMV) upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.


International Journal of Molecular Sciences | 2018

Inhibition of Tetraspanin Functions Impairs Human Papillomavirus and Cytomegalovirus Infections

Laura Fast; Snježana Mikuličić; Anna Fritzen; Jonas Schwickert; Fatima Boukhallouk; Daniel Hochdorfer; Christian Sinzger; Henar Suárez; Peter N. Monk; María Yáñez-Mó; Diana Lieber; Luise Florin

Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.


PLOS ONE | 2017

A Luciferase Gene Driven by an Alphaherpesviral Promoter Also Responds to Immediate Early Antigens of the Betaherpesvirus HCMV, Allowing Comparative Analyses of Different Human Herpesviruses in One Reporter Cell Line.

Anna Katharina Maier; Raimund Jung; Clarissa Villinger; Axel Schubert; Paul Walther; Christian Sinzger; Diana Lieber

Widely used methods for quantification of human cytomegalovirus (HCMV) infection in cell culture such as immunoblotting or plaque reduction assays are generally restricted to low throughput and require time-consuming evaluation. Up to now, only few HCMV reporter cell lines have been generated to overcome these restrictions and they are afflicted with other limitations because permanently expandable cell lines are normally not fully permissive to HCMV. In this work, a previously existing epithelial cell line hosting a luciferase gene under control of a Varicella-zoster virus promoter was adopted to investigate HCMV infection. The cells were susceptible to different HCMV strains at infection efficiencies that corresponded to their respective degree of epithelial cell tropism. Expression of early and late viral antigens, formation of nuclear inclusions, release of infectious virus progeny, and focal growth indicated productive viral replication. However, viral release and spread occurred at lower levels than in primary cell lines which appears to be due to a malfunction of virion morphogenesis during the nuclear stage. Expression of the luciferase reporter gene was specifically induced in HCMV infected cultures as a function of the virus dose and dependent on viral immediate early gene expression. The level of reporter activity accurately reflected infection efficiencies as determined by viral antigen immunostaining, and hence could discriminate the cell tropism of the tested virus strains. As proof-of-principle, we demonstrate that this cell line is applicable to evaluate drug resistance of clinical HCMV isolates and the neutralization capacity of human sera, and that it allows comparative and simultaneous analysis of HCMV and human herpes simplex virus type 1. In summary, the permanent epithelial reporter cell line allows robust, rapid and objective quantitation of HCMV infection and it will be particularly useful in higher throughput analyses as well as in comparative analyses of different human herpesviruses.


Methods of Molecular Biology | 2013

Determination of HSV-1 infectivity by plaque assay and a luciferase reporter cell line.

Diana Lieber; Susanne M. Bailer

Collaboration


Dive into the Diana Lieber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Jahn

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge