Diana M. Cheng
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana M. Cheng.
Journal of Agricultural and Food Chemistry | 2008
Jonathan Gorelick-Feldman; David MacLean; Nebojsa Ilic; Alexander Poulev; Mary Ann Lila; Diana M. Cheng; Ilya Raskin
Phytoecdysteroids, which are structurally similar or identical to insect molting hormones, produce a range of effects in mammals, including increasing growth and physical performance. To study the mechanism of action of phytoecdysteroids in mammalian tissue, an in vitro cellular assay of protein synthesis was developed. In C2C12 murine myotubes and human primary myotubes, phytoecdysteroids increased protein synthesis by up to 20%. In vivo, ecdysteroids increased rat grip strength. Ecdysteroid-containing plant extracts produced similar results. The effect was inhibited by a phosphoinositide kinase-3 inhibitor, which suggests a PI3K-mediated mechanism.
Food Chemistry | 2012
Diana M. Cheng; Peter Kuhn; Alexander Poulev; Leonel E. Rojo; Mary Ann Lila; Ilya Raskin
Cinnamon has a long history of medicinal use and continues to be valued for its therapeutic potential for improving metabolic disorders such as type 2 diabetes. In this study, a phytochemically-enhanced functional food ingredient that captures water soluble polyphenols from aqueous cinnamon extract (CE) onto a protein rich matrix was developed. CE and cinnamon polyphenol-enriched defatted soy flour (CDSF) were effective in acutely lowering fasting blood glucose levels in diet induced obese hyperglycemic mice at 300 and 600 mg/kg, respectively. To determine mechanisms of action, rat hepatoma cells were treated with CE and eluates of CDSF at a range of 1-25 μg/ml. CE and eluates of CDSF demonstrated dose-dependent inhibition of hepatic glucose production with significant levels of inhibition at 25 μg/ml. Furthermore, CE decreased the gene expression of two major regulators of hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. The hypoglycemic and insulin-like effects of CE and CDSF may help to ameliorate type 2 diabetes conditions.
Journal of Agricultural and Food Chemistry | 2013
Mary H. Grace; Ivette Guzman; Diana E. Roopchand; Kristin Moskal; Diana M. Cheng; Natasha Pogrebnyak; Ilya Raskin; Amy B. Howell; Mary Ann Lila
Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium-roast peanut flour (MPF), and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), whereas total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC, and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable antiadhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4-0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in 1 cup (300 mL) of commercial CB juice cocktail, which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited Gram-positive and Gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations.
PLOS ONE | 2014
Diana M. Cheng; Natalia Pogrebnyak; Peter Kuhn; Christian G. Krueger; William D. Johnson; Ilya Raskin
Polyphenol-rich Rutgers Scarlet Lettuce (RSL) (Lactuca sativa L.) was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents). Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg) for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water) control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes.
International Journal of Cosmetic Science | 2015
Brittany L. Graf; Diana M. Cheng; Debora Esposito; T. Shertel; Alexander Poulev; Nathalie Plundrich; D. Itenberg; N. Dayan; Mary Ann Lila; Ilya Raskin
Quinoa (Chenopodium quinoa Willd.) is a seed crop rich in bioactive compounds including phytoecdysones (especially 20‐hydroxyecdysone, 20HE), polyphenols, proteins and essential fatty acids. We previously reported a method to leach and concentrate quinoa bioactives into a complex phytochemical mixture termed quinoa leachate (QL). Here, we aimed to determine the effect of QL and its chemically distinct fractions on five biochemical endpoints relevant to skin care applications: (i) cell viability, (ii) matrix metalloproteinase (MMP) mRNA expression, (iii) MMP enzymatic activity, (iv) tyrosinase enzymatic activity and (v) intracellular reactive oxygen species (ROS) production.
Nutrition | 2014
Anik Boudreau; Diana M. Cheng; Carmen Ruiz; David M. Ribnicky; Larry K. Allain; C. Ray Brassieur; D. Phil Turnipseed; William T. Cefalu; Z. Elizabeth Floyd
OBJECTIVE Plant-based therapies have been used in medicine throughout recorded history. Information about the therapeutic properties of plants often can be found in local cultures as folk medicine is communicated from one generation to the next. The aim of this study was to identify native Louisiana plants from Creole folk medicine as a potential source of therapeutic compounds for the treatment of insulin resistance, type 2 diabetes, and related disorders. METHODS We used an interdisciplinary approach combining expertise in disciplines ranging from cultural anthropology and botany to biochemistry and endocrinology to screen native southwest Louisiana plants. Translation of accounts of Creole folk medicine yielded a list of plants with documented use in treating a variety of conditions, including inflammation. These plants were collected, vouchered, and catalogued before extraction of soluble components. Extracts were analyzed for bioactivity in regulating inflammatory responses in macrophages or fatty acid-induced insulin resistance in C2C12 skeletal muscle cells. RESULTS Several extracts altered gene expression of inflammatory markers in macrophages. Multiplex analysis of kinase activation in insulin-signaling pathways in skeletal muscle also identified a subset of extracts that alter insulin-stimulated protein kinase B phosphorylation in the presence of fatty-acid-induced insulin resistance. CONCLUSION An interdisciplinary approach to screening botanical sources of therapeutic agents can be successfully applied to identify native plants used in folk medicine as potential sources of therapeutic agents in treating insulin resistance in skeletal muscle or inflammatory processes associated with obesity-related insulin resistance.
Molecular Nutrition & Food Research | 2016
Diana M. Cheng; Diana E. Roopchand; Alexander Poulev; Peter Kuhn; Isabel Armas; William D. Johnson; Andrew Oren; David M. Ribnicky; Ehud Zelzion; Debashish Bhattacharya; Ilya Raskin
SCOPE The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. METHODS AND RESULTS Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. CONCLUSIONS RSL phenolics contributed to attenuation of post-prandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon.
VirusDisease | 2015
Aizhan Turmagambetova; Nadezhda S. Sokolova; Andrey Bogoyavlenskiy; Vladimir Berezin; Mary Ann Lila; Diana M. Cheng; Vyacheslav Dushenkov
Respiratory viruses are a major public health problem because of their prevalence and high morbidity rate leading to considerable social and economic implications. Cranberry has therapeutic potential attributed to a comprehensive list of phytochemicals including anthocyanins, flavonols, and unique A-type proanthocyanidins. Soy flavonoids, including isoflavones, have demonstrated anti-viral effects in vitro and in vivo. Recently, it was demonstrated that edible proteins can efficiently sorb and concentrate cranberry polyphenols, including anthocyanins and proanthocyanins, providing greatly stabilized matrices suitable for food products. The combination of cranberry and soy phytoactives may be an effective dietary anti-viral resource. Anti-viral properties of both cranberry juice-enriched and cranberry pomace polyphenol-enriched soy protein isolate (CB-SPI and CBP-SPI) were tested against influenza viruses (H7N1, H5N3, H3N2), Newcastle disease virus and Sendai virus in vitro and in ovo. In our experiments, preincubation with CB-SPI or CBP-SPI resulted in inhibition of virus adsorption to chicken red blood cells and reduction in virus nucleic acid content up to 16-fold, however, CB-SPI and CBP-SPI did not affect hemagglutination. Additionally, CB-SPI and CBP-SPI inhibited viral replication and infectivity more effectively than the commercially available anti-viral drug Amizon. Results suggest CB-SPI and CBP-SPI may have preventative and therapeutic potential against viral infections that cause diseases of the respiratory and gastro-intestinal tract.
Phytochemistry | 2014
Carrie Waterman; Diana M. Cheng; Patricio Rojas-Silva; Alexander Poulev; Julia Dreifus; Mary Ann Lila; Ilya Raskin
Food Chemistry | 2012
Diana E. Roopchand; Mary H. Grace; Peter Kuhn; Diana M. Cheng; Nathalie Plundrich; Alexander Poulev; Amy B. Howell; Bertold Fridlender; Mary Ann Lila; Ilya Raskin