Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana M. Lynch is active.

Publication


Featured researches published by Diana M. Lynch.


Nature | 2009

Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys.

Jinyan Liu; Kara L. O’Brien; Diana M. Lynch; Nathaniel L. Simmons; Annalena La Porte; Ambryice M. Riggs; Peter Abbink; Rory T. Coffey; Lauren E. Grandpre; Michael S. Seaman; Gary Landucci; Donald N. Forthal; David C. Montefiori; Angela Carville; Keith G. Mansfield; Menzo Jans Emco Havenga; Maria Grazia Pau; Jaap Goudsmit; Dan H. Barouch

A recombinant adenovirus serotype 5 (rAd5) vector-based vaccine for HIV-1 has recently failed in a phase 2b efficacy study in humans. Consistent with these results, preclinical studies have demonstrated that rAd5 vectors expressing simian immunodeficiency virus (SIV) Gag failed to reduce peak or setpoint viral loads after SIV challenge of rhesus monkeys (Macaca mulatta) that lacked the protective MHC class I allele Mamu-A*01 (ref. 3). Here we show that an improved T-cell-based vaccine regimen using two serologically distinct adenovirus vectors afforded substantially improved protective efficacy in this challenge model. In particular, a heterologous rAd26 prime/rAd5 boost vaccine regimen expressing SIV Gag elicited cellular immune responses with augmented magnitude, breadth and polyfunctionality as compared with the homologous rAd5 regimen. After SIVMAC251 challenge, monkeys vaccinated with the rAd26/rAd5 regimen showed a 1.4 log reduction of peak and a 2.4 log reduction of setpoint viral loads as well as decreased AIDS-related mortality as compared with control animals. These data demonstrate that durable partial immune control of a pathogenic SIV challenge for more than 500 days can be achieved by a T-cell-based vaccine in Mamu-A*01-negative rhesus monkeys in the absence of a homologous Env antigen. These findings have important implications for the development of next-generation T-cell-based vaccine candidates for HIV-1.


Nature | 2006

Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity.

Diane M. Roberts; Anjali Nanda; Menzo Jans Emco Havenga; Peter Abbink; Diana M. Lynch; Bonnie A. Ewald; Jinyan Liu; Anna R. Thorner; Patricia E. Swanson; Darci A. Gorgone; Michelle A. Lifton; Angelique A. C. Lemckert; Lennart Holterman; Bing Chen; Athmanundh Dilraj; Angela Carville; Keith G. Mansfield; Jaap Goudsmit; Dan H. Barouch

A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.


Nature | 2012

Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys

Dan H. Barouch; Jinyan Liu; Hualin Li; Lori F. Maxfield; Peter Abbink; Diana M. Lynch; M. Justin Iampietro; Adam SanMiguel; Michael S. Seaman; Guido Ferrari; Donald N. Forthal; Ilnour Ourmanov; Vanessa M. Hirsch; Angela Carville; Keith G. Mansfield; Donald Stablein; Maria G. Pau; Hanneke Schuitemaker; Jerald C. Sadoff; Erik Billings; Mangala Rao; Merlin L. Robb; Jerome H. Kim; Mary Marovich; Jaap Goudsmit; Nelson L. Michael

Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIVSME543 Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIVMAC251 challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.


Journal of Virology | 2007

Comparative Seroprevalence and Immunogenicity of Six Rare Serotype Recombinant Adenovirus Vaccine Vectors from Subgroups B and D

Peter Abbink; Angelique A. C. Lemckert; Bonnie A. Ewald; Diana M. Lynch; Matthew Denholtz; Shirley Smits; Lennart Holterman; Irma Damen; Ronald Vogels; Anna R. Thorner; Kara L. O'Brien; Angela Carville; Keith G. Mansfield; Jaap Goudsmit; Menzo Jans Emco Havenga; Dan H. Barouch

ABSTRACT Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.


Journal of Virology | 2005

Immunogenicity of Heterologous Prime-Boost Regimens Involving Recombinant Adenovirus Serotype 11 (Ad11) and Ad35 Vaccine Vectors in the Presence of Anti-Ad5 Immunity

Angelique A. C. Lemckert; Shawn M. Sumida; Lennart Holterman; Ronald Vogels; Diana M. Truitt; Diana M. Lynch; Anjali Nanda; Bonnie A. Ewald; Darci A. Gorgone; Michelle A. Lifton; Jaap Goudsmit; Menzo Jans Emco Havenga; Dan H. Barouch

ABSTRACT The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.


Journal of Virology | 2008

Magnitude and Phenotype of Cellular Immune Responses Elicited by Recombinant Adenovirus Vectors and Heterologous Prime-Boost Regimens in Rhesus Monkeys

Jinyan Liu; Bonnie A. Ewald; Diana M. Lynch; Matthew Denholtz; Peter Abbink; Angelique A. C. Lemckert; Angela Carville; Keith G. Mansfield; Menzo Jans Emco Havenga; Jaap Goudsmit; Dan H. Barouch

ABSTRACT Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to elicit antigen-specific cellular immune responses. Rare serotype rAd vectors have also been constructed to circumvent preexisting anti-Ad5 immunity and to facilitate the development of novel heterologous rAd prime-boost regimens. Here we show that rAd5, rAd26, and rAd48 vectors elicit qualitatively distinct phenotypes of cellular immune responses in rhesus monkeys and can be combined as potent heterologous prime-boost vaccine regimens. While rAd5-Gag induced primarily gamma interferon-positive (IFN-γ+) and IFN-γ+/tumor necrosis factor alpha+ (TNF-α+) T-lymphocyte responses, rAd26-Gag and rAd48-Gag induced higher proportions of interleukin-2+ (IL-2+) and polyfunctional IFN-γ+/TNF-α+/IL-2+ T-lymphocyte responses. Priming with the rare serotype rAd vectors proved remarkably effective for subsequent boosting with rAd5 vectors. These data demonstrate that the rare serotype rAd vectors elicited T-lymphocyte responses that were phenotypically distinct from those elicited by rAd5 vectors and suggest the functional relevance of polyfunctional CD8+ and CD4+ T-lymphocyte responses. Moreover, qualitative differences in cellular immune responses may prove critical in determining the overall potency of heterologous rAd prime-boost regimens.


Journal of Virology | 2010

Breadth of Neutralizing Antibodies Elicited by Stable, Homogeneous Clade A and Clade C HIV-1 gp140 Envelope Trimers in Guinea Pigs

Joseph P. Nkolola; Hanqin Peng; Ethan C. Settembre; Michael M. Freeman; Lauren E. Grandpre; Colleen Devoy; Diana M. Lynch; Annalena La Porte; Nathaniel L. Simmons; Ritu R. Bradley; David C. Montefiori; Michael S. Seaman; Bing Chen; Dan H. Barouch

ABSTRACT The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.


Journal of Virology | 2005

Immunogenicity of recombinant fiber-chimeric adenovirus serotype 35 vector-based vaccines in mice and rhesus monkeys.

Anjali Nanda; Diana M. Lynch; Jaap Goudsmit; Angelique A. C. Lemckert; Bonnie A. Ewald; Shawn M. Sumida; Diana M. Truitt; Peter Abbink; Michael G. Kishko; Darci A. Gorgone; Michelle A. Lifton; Ling Shen; Angela Carville; Keith G. Mansfield; Menzo Jans Emco Havenga; Dan H. Barouch

ABSTRACT Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.


Journal of Virology | 2012

Adenovirus Serotype 5 Neutralizing Antibodies Target both Hexon and Fiber following Vaccination and Natural Infection

Ritu R. Bradley; Diana M. Lynch; Mark J. Iampietro; Erica N. Borducchi; Dan H. Barouch

ABSTRACT The immunogenicity of adenovirus serotype 5 (Ad5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against the hexon hypervariable regions (HVRs). However, the role of NAbs directed against other capsid components, particularly the adenovirus fiber, remains unclear. Here we show that Ad5 NAbs target both hexon and fiber following vaccination and natural infection. Utilizing neutralization assays with capsid chimeric vectors, we observed that NAb responses to hexon appeared dominant and NAb responses against fiber were subdominant in sera from vaccinated mice, vaccinated humans, and naturally exposed humans. A novel chimeric Ad5 vector in which both the hexon HVRs and the fiber knob were exchanged nearly completely evaded Ad5-specific NAbs both in vitro and in vivo.


Journal of Virology | 2006

Modulation of DNA Vaccine-Elicited CD8+ T-Lymphocyte Epitope Immunodominance Hierarchies

Jinyan Liu; Bonnie A. Ewald; Diana M. Lynch; Anjali Nanda; Shawn M. Sumida; Dan H. Barouch

ABSTRACT Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8+ T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8+ T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8+ T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant Db-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant Db-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.

Collaboration


Dive into the Diana M. Lynch's collaboration.

Top Co-Authors

Avatar

Dan H. Barouch

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Abbink

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bonnie A. Ewald

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jinyan Liu

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Annalena La Porte

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nathaniel L. Simmons

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge