Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel L. Simmons is active.

Publication


Featured researches published by Nathaniel L. Simmons.


Nature | 2009

Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys.

Jinyan Liu; Kara L. O’Brien; Diana M. Lynch; Nathaniel L. Simmons; Annalena La Porte; Ambryice M. Riggs; Peter Abbink; Rory T. Coffey; Lauren E. Grandpre; Michael S. Seaman; Gary Landucci; Donald N. Forthal; David C. Montefiori; Angela Carville; Keith G. Mansfield; Menzo Jans Emco Havenga; Maria Grazia Pau; Jaap Goudsmit; Dan H. Barouch

A recombinant adenovirus serotype 5 (rAd5) vector-based vaccine for HIV-1 has recently failed in a phase 2b efficacy study in humans. Consistent with these results, preclinical studies have demonstrated that rAd5 vectors expressing simian immunodeficiency virus (SIV) Gag failed to reduce peak or setpoint viral loads after SIV challenge of rhesus monkeys (Macaca mulatta) that lacked the protective MHC class I allele Mamu-A*01 (ref. 3). Here we show that an improved T-cell-based vaccine regimen using two serologically distinct adenovirus vectors afforded substantially improved protective efficacy in this challenge model. In particular, a heterologous rAd26 prime/rAd5 boost vaccine regimen expressing SIV Gag elicited cellular immune responses with augmented magnitude, breadth and polyfunctionality as compared with the homologous rAd5 regimen. After SIVMAC251 challenge, monkeys vaccinated with the rAd26/rAd5 regimen showed a 1.4 log reduction of peak and a 2.4 log reduction of setpoint viral loads as well as decreased AIDS-related mortality as compared with control animals. These data demonstrate that durable partial immune control of a pathogenic SIV challenge for more than 500 days can be achieved by a T-cell-based vaccine in Mamu-A*01-negative rhesus monkeys in the absence of a homologous Env antigen. These findings have important implications for the development of next-generation T-cell-based vaccine candidates for HIV-1.


Journal of Virology | 2010

Breadth of Neutralizing Antibodies Elicited by Stable, Homogeneous Clade A and Clade C HIV-1 gp140 Envelope Trimers in Guinea Pigs

Joseph P. Nkolola; Hanqin Peng; Ethan C. Settembre; Michael M. Freeman; Lauren E. Grandpre; Colleen Devoy; Diana M. Lynch; Annalena La Porte; Nathaniel L. Simmons; Ritu R. Bradley; David C. Montefiori; Michael S. Seaman; Bing Chen; Dan H. Barouch

ABSTRACT The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.


Journal of Virology | 2010

Route of Adenovirus-Based HIV-1 Vaccine Delivery Impacts the Phenotype and Trafficking of Vaccine-Elicited CD8+ T Lymphocytes

David R. Kaufman; Maytal Bivas-Benita; Nathaniel L. Simmons; Darby Miller; Dan H. Barouch

ABSTRACT Candidate HIV-1 vaccine regimens utilizing intramuscularly (i.m.) administered recombinant adenovirus (rAd)-based vectors can induce potent mucosal cellular immunity. However, the degree to which mucosal rAd vaccine routing might alter the quality and anatomic distribution of vaccine-elicited CD8+ T lymphocytes remains unclear. We show that the route of vaccination critically impacts not only the magnitude but also the phenotype and trafficking of antigen-specific CD8+ T lymphocytes in mice. I.m. rAd immunization induced robust local transgene expression and elicited high-frequency, polyfunctional CD8+ T lymphocytes that trafficked broadly to both systemic and mucosal compartments. In contrast, intranasal (i.n.) rAd immunization led to similarly robust local transgene expression but generated low-frequency, monofunctional CD8+ T lymphocytes with restricted anatomic trafficking patterns. Respiratory rAd immunization elicited systemic and mucosal CD8+ T lymphocytes with phenotypes and trafficking properties distinct from those elicited by i.m. or i.n. rAd immunization. Our findings indicate that the anatomic microenvironment of antigen expression critically impacts the phenotype and trafficking of antigen-specific CD8+ T lymphocytes.


Journal of Virology | 2013

Alternative serotype adenovirus vaccine vectors elicit memory T cells with enhanced anamnestic capacity compared to Ad5 vectors

Pablo Penaloza-MacMaster; Nicholas M. Provine; Joshua Ra; Erica N. Borducchi; Anna McNally; Nathaniel L. Simmons; Mark J. Iampietro; Dan H. Barouch

ABSTRACT The failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers.


Journal of Virology | 2011

Multiple Innate Immune Pathways Contribute to the Immunogenicity of Recombinant Adenovirus Vaccine Vectors

Elizabeth G. Rhee; Joseph N. Blattman; Sudhir Pai Kasturi; R. Phelps Kelley; David R. Kaufman; Diana M. Lynch; Annalena La Porte; Nathaniel L. Simmons; Sarah Clark; Bali Pulendran; Philip D. Greenberg; Dan H. Barouch

ABSTRACT The innate immune pathways that contribute to the potent immunogenicity of recombinant adenovirus (rAd) vaccine vectors remain largely undefined. Previous studies assessing innate immunity triggered by vaccine vectors have largely focused on in vitro studies involving antigen-presenting cells and on early in vivo inflammatory responses. Here, we systematically explore the Toll-like receptor (TLR) signaling requirements for the generation of cellular immune responses by intramuscular immunization with common and alternative serotype rAd vectors in mice. Antigen-specific CD8+ T-lymphocyte responses elicited by these rAd vectors were significantly diminished in MyD88−/− mice but not in TRIF−/− or TLR3−/− mice, suggesting the importance of MyD88-dependent TLR signaling. However, the absence of each individual TLR resulted in minimal to no effect on vaccine-elicited cellular immune responses. Moreover, responses were not diminished in IL-1R−/− or IL-18R−/− mice. These data suggest that rAd vectors engage multiple MyD88-dependent signaling pathways, none of which are individually critical; rather, they are integrated to contribute to the potent immunogenicity of rAd vectors. Stimulation of multiple innate immune mechanisms may prove a generalizable property of potent vaccines, and this strategy could be harnessed in the development of next-generation vaccine vectors and adjuvants.


Journal of Virology | 2012

Full-Length HIV-1 Immunogens Induce Greater Magnitude and Comparable Breadth of T Lymphocyte Responses to Conserved HIV-1 Regions Compared with Conserved-Region-Only HIV-1 Immunogens in Rhesus Monkeys

Kathryn E. Stephenson; Adam SanMiguel; Nathaniel L. Simmons; Kaitlin M. Smith; Mark G. Lewis; James Szinger; Bette T. Korber; Dan H. Barouch

ABSTRACT A global HIV-1 vaccine will likely need to induce immune responses against conserved HIV-1 regions to contend with the profound genetic diversity of HIV-1. Here we evaluated the capacity of immunogens consisting of only highly conserved HIV-1 sequences that are aimed at focusing cellular immune responses on these potentially critical regions. We assessed in rhesus monkeys the breadth and magnitude of T lymphocyte responses elicited by adenovirus vectors expressing either full-length HIV-1 Gag/Pol/Env immunogens or concatenated immunogens consisting of only highly conserved HIV-1 sequences. Surprisingly, we found that the full-length immunogens induced comparable breadth (P = 1.0) and greater magnitude (P = 0.01) of CD8+ T lymphocyte responses against conserved HIV-1 regions compared with the conserved-region-only immunogens. Moreover, the full-length immunogens induced a 5-fold increased total breadth of HIV-1-specific T lymphocyte responses compared with the conserved-region-only immunogens (P = 0.007). These results suggest that full-length HIV-1 immunogens elicit a substantially increased magnitude and breadth of cellular immune responses compared with conserved-region-only HIV-1 immunogens, including greater magnitude and comparable breadth of responses against conserved sequences.


Journal of Immunology | 2011

Vitamin A Deficiency Impairs Vaccine-Elicited Gastrointestinal Immunity

David R. Kaufman; Jaime De Calisto; Nathaniel L. Simmons; Ashley N. Cruz; Eduardo J. Villablanca; J. Rodrigo Mora; Dan H. Barouch

Vitamin A deficiency is highly prevalent in much of the developing world, where vaccination programs are of paramount importance to public health. However, the impact of vitamin A deficiency on the immunogenicity and protective efficacy of vaccines has not been defined previously. In this article, we show that the vitamin A metabolite retinoic acid is critical for trafficking of vaccine-elicited T lymphocytes to the gastrointestinal mucosa and for vaccine protective efficacy in mice. Moderate vitamin A deficiency abrogated Ag-specific T lymphocyte trafficking to the gastrointestinal tract, gastrointestinal cellular immune responses, and protection against a mucosal challenge following immunization with a recombinant adenovirus vaccine vector. Oral vitamin A supplementation as well as retinoic acid administration fully restored the mucosal immune responses and vaccine protective efficacy. These data suggest that oral vitamin A supplementation may be important for optimizing the success of vaccines against HIV-1 and other mucosal pathogens in the developing world, highlighting a critical relationship between host nutritional status and vaccine efficacy.


Journal of Virology | 2009

Protective Efficacy of a Single Immunization of a Chimeric Adenovirus Vector-Based Vaccine against Simian Immunodeficiency Virus Challenge in Rhesus Monkeys

Dan H. Barouch; Jinyan Liu; Diana M. Lynch; Kara L. O'Brien; Annalena La Porte; Nathaniel L. Simmons; Ambryice M. Riggs; Sarah Clark; Peter Abbink; David C. Montefiori; Gary Landucci; Donald N. Forthal; Steven G. Self; Angela Carville; Keith G. Mansfield; Jaap Goudsmit

ABSTRACT Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine delivery. We therefore evaluated the immunogenicity and protective efficacy of a single immunization of chimeric rAd5 hexon hypervariable region 48 (rAd5HVR48) vectors expressing SIV Gag, Pol, Nef, and Env against a homologous SIV challenge in rhesus monkeys. Inclusion of Env resulted in improved control of peak and set point SIV RNA levels following challenge. In contrast, DNA vaccine priming did not further improve the protective efficacy of rAd5HVR48 vectors in this system.


Journal of Virology | 2010

TLR4 Ligands Augment Antigen-Specific CD8+ T Lymphocyte Responses Elicited by a Viral Vaccine Vector

Elizabeth G. Rhee; R. Phelps Kelley; Isha Agarwal; Diana M. Lynch; Annalena La Porte; Nathaniel L. Simmons; Sarah Clark; Dan H. Barouch

ABSTRACT Toll-like receptor (TLR) ligands are critical activators of innate immunity and are being developed as vaccine adjuvants. However, their utility in conjunction with viral vector-based vaccines remains unclear. In this study, we evaluated the impact of a variety of TLR ligands on antigen-specific CD8+ T lymphocyte responses elicited by a recombinant adenovirus serotype 26 (rAd26) vector expressing simian immunodeficiency virus Gag in mice. The TLR3 ligand poly(I:C) suppressed Gag-specific cellular immune responses, whereas the TLR4 ligands lipopolysaccharide and monophosphoryl lipid A substantially augmented the magnitude and functionality of these responses by a MyD88- and TRIF-dependent mechanism. These data demonstrate that TLR ligands can modulate the immunogenicity of viral vaccine vectors both positively and negatively. Moreover, these findings suggest the potential utility of TLR4 ligands as adjuvants for rAd vector-based vaccines.


Journal of Virology | 2010

Efficient Generation of Mucosal and Systemic Antigen-Specific CD8+ T-Cell Responses following Pulmonary DNA Immunization

Maytal Bivas-Benita; Liat Bar; Geoffrey O. Gillard; David R. Kaufman; Nathaniel L. Simmons; Avi-Hai Hovav; Norman L. Letvin

ABSTRACT Although mucosal CD8+ T-cell responses are important in combating mucosal infections, the generation of such immune responses by vaccination remains problematic. In the present study, we evaluated the ability of plasmid DNA to induce local and systemic antigen-specific CD8+ T-cell responses after pulmonary administration. We show that the pulmonary delivery of plasmid DNA formulated with polyethyleneimine (PEI-DNA) induced robust systemic CD8+ T-cell responses that were comparable in magnitude to those generated by intramuscular (i.m.) immunization. Most importantly, we observed that the pulmonary delivery of PEI-DNA elicited a 10-fold-greater antigen-specific CD8+ T-cell response in lungs and draining lymph nodes of mice than that of i.m. immunization. The functional evaluation of these pulmonary CD8+ T cells revealed that they produced type I cytokines, and pulmonary immunization with PEI-DNA induced lung-associated antigen-specific CD4+ T cells that produced higher levels of interleukin-2 than those induced by i.m. immunization. Pulmonary PEI-DNA immunization also induced CD8+ T-cell responses in the gut and vaginal mucosa. Finally, pulmonary, but not i.m., plasmid DNA vaccination protected mice from a lethal recombinant vaccinia virus challenge. These findings suggest that pulmonary PEI-DNA immunization might be a useful approach for immunizing against pulmonary pathogens and might also protect against infections initiated at other mucosal sites.

Collaboration


Dive into the Nathaniel L. Simmons's collaboration.

Top Co-Authors

Avatar

Dan H. Barouch

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Annalena La Porte

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Diana M. Lynch

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

David R. Kaufman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ambryice M. Riggs

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bette T. Korber

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Szinger

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge