Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana M. Sima is active.

Publication


Featured researches published by Diana M. Sima.


Journal of Magnetic Resonance | 2008

MRS signal quantitation: a review of time- and frequency-domain methods

Jean-Baptiste Poullet; Diana M. Sima; Sabine Van Huffel

In this paper an overview of time-domain and frequency-domain quantitation methods is given. Advantages and drawbacks of these two families of quantitation methods are discussed. An overview of preprocessing methods, such as lineshape correction methods or unwanted component removal methods, is also given. The choice of the quantitation method depends on the data under investigation and the pursued objectives.


NeuroImage: Clinical | 2015

Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images

Saurabh Jain; Diana M. Sima; Annemie Ribbens; Melissa Cambron; Anke Maertens; Wim Van Hecke; Johan De Mey; Frederik Barkhof; Martijn D. Steenwijk; Marita Daams; Frederik Maes; Sabine Van Huffel; Hugo Vrenken; Dirk Smeets

The location and extent of white matter lesions on magnetic resonance imaging (MRI) are important criteria for diagnosis, follow-up and prognosis of multiple sclerosis (MS). Clinical trials have shown that quantitative values, such as lesion volumes, are meaningful in MS prognosis. Manual lesion delineation for the segmentation of lesions is, however, time-consuming and suffers from observer variability. In this paper, we propose MSmetrix, an accurate and reliable automatic method for lesion segmentation based on MRI, independent of scanner or acquisition protocol and without requiring any training data. In MSmetrix, 3D T1-weighted and FLAIR MR images are used in a probabilistic model to detect white matter (WM) lesions as an outlier to normal brain while segmenting the brain tissue into grey matter, WM and cerebrospinal fluid. The actual lesion segmentation is performed based on prior knowledge about the location (within WM) and the appearance (hyperintense on FLAIR) of lesions. The accuracy of MSmetrix is evaluated by comparing its output with expert reference segmentations of 20 MRI datasets of MS patients. Spatial overlap (Dice) between the MSmetrix and the expert lesion segmentation is 0.67 ± 0.11. The intraclass correlation coefficient (ICC) equals 0.8 indicating a good volumetric agreement between the MSmetrix and expert labelling. The reproducibility of MSmetrix lesion volumes is evaluated based on 10 MS patients, scanned twice with a short interval on three different scanners. The agreement between the first and the second scan on each scanner is evaluated through the spatial overlap and absolute lesion volume difference between them. The spatial overlap was 0.69 ± 0.14 and absolute total lesion volume difference between the two scans was 0.54 ± 0.58 ml. Finally, the accuracy and reproducibility of MSmetrix compare favourably with other publicly available MS lesion segmentation algorithms, applied on the same data using default parameter settings.


Archive | 2012

Exponential Data Fitting and its Applications

Victor Pereyra; Godela Scherer; Christina Ankjærgaard; Kaustav Banerjee; Saul D. Cohen; George T. Fleming; Per Christian Hansen; Mayank Jain; Linda Kaufman; Marianela Lentini; Huey-Wen Lin; Rafael Martín; Miguel Martín-Landrove; Katharine M. Mullen; Dianne P. O'Leary; Hans Bruun Nielsen; Marco Paluszny; Jean-Baptiste Poullet; Bert W. Rust; Diana M. Sima; Navin Srivastava; Roberto Suaya; Wuilian Torres; Sabine Van Huffel; Ivo H. M. van Stokkum

Type Ia supernova light curves are characterized by a rapid rise from zero luminosity to a peak value, followed by a slower quasi-exponential decline. The rise and peak last for a few days, while the decline persists for many months. It is widely believed that the decline is powered by the radioactive decay chain 56Ni → 56Co → 56Fe, but the rates of decline in luminosity do not exactly match the decay rates of Ni and Co. In 1976, Rust, Leventhal, and McCall [19] presented evidence that the declining part of the light curve is well modelled by a linear combination of two exponentials whose decay rates were proportional to, but not exactly equal to, the decay rates for Ni and Co. The proposed reason for the lack of agreement between the rates was that the radioactive decays take place in the interior of a white dwarf star, at densities much higher than any encountered in a terrestrial environment, and that these higher densities accelerate the two decays by the same factor. This paper revisits this model, demonstrating that a variant of it provides excellent fits to observed luminosity data from 6 supernovae.


NMR in Biomedicine | 2013

Hierarchical non-negative matrix factorization (hNMF): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using MRSI

Yuqian Li; Diana M. Sima; Sofie Van Cauter; Anca Croitor Sava; Uwe Himmelreich; Yiming Pi; Sabine Van Huffel

MRSI has shown potential in the diagnosis and prognosis of glioblastoma multiforme (GBM) brain tumors, but its use is limited by difficult data interpretation. When the analyzed MRSI data present more than two tissue patterns, conventional non‐negative matrix factorization (NMF) implementation may lead to a non‐robust estimation. The aim of this article is to introduce an effective approach for the differentiation of GBM tissue patterns using MRSI data. A hierarchical non‐negative matrix factorization (hNMF) method that can blindly separate the most important spectral sources in short‐TE 1H MRSI data is proposed. This algorithm consists of several levels of NMF, where only two tissue patterns are computed at each level. The method is demonstrated on both simulated and in vivo short‐TE 1H MRSI data in patients with GBM. For the in vivo study, the accuracy of the recovered spectral sources was validated using expert knowledge. Results show that hNMF is able to accurately estimate the three tissue patterns present in the tumoral and peritumoral area of a GBM, i.e. normal, tumor and necrosis, thus providing additional useful information that can help in the diagnosis of GBM. Moreover, the hNMF results can be displayed as easily interpretable maps showing the contribution of each tissue pattern to each voxel. Copyright


NeuroImage | 2017

Longitudinal multiple sclerosis lesion segmentation: Resource and challenge

Aaron Carass; Snehashis Roy; Amod Jog; Jennifer L. Cuzzocreo; Elizabeth Magrath; Adrian Gherman; Julia Button; James Nguyen; Ferran Prados; Carole H. Sudre; Manuel Jorge Cardoso; Niamh Cawley; O Ciccarelli; Claudia A. M. Wheeler-Kingshott; Sebastien Ourselin; Laurence Catanese; Hrishikesh Deshpande; Pierre Maurel; Olivier Commowick; Christian Barillot; Xavier Tomas-Fernandez; Simon K. Warfield; Suthirth Vaidya; Abhijith Chunduru; Ramanathan Muthuganapathy; Ganapathy Krishnamurthi; Andrew Jesson; Tal Arbel; Oskar Maier; Heinz Handels

Abstract In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time‐points, and test data of fourteen subjects with a mean of 4.4 time‐points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state‐of‐the‐art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters. HighlightsPublic lesion data base of 21 training data sets and 61 testing data sets.Fully automated evaluation website.Comparison between 14 state‐of‐the‐art algorithms and 2 manual delineators.


Brain and behavior | 2016

Reliable measurements of brain atrophy in individual patients with multiple sclerosis

Dirk Smeets; Annemie Ribbens; Diana M. Sima; Melissa Cambron; Dana Horakova; Saurabh Jain; Anke Maertens; Eline Van Vlierberghe; Vasilis Terzopoulos; Anne-Marie Van Binst; Manuela Vaneckova; Jan Krasensky; Tomas Uher; Zdenek Seidl; Jacques De Keyser; Guy Nagels; Johan De Mey; Eva Havrdova; Wim Van Hecke

As neurodegeneration is recognized as a major contributor to disability in multiple sclerosis (MS), brain atrophy quantification could have a high added value in clinical practice to assess treatment efficacy and disease progression, provided that it has a sufficiently low measurement error to draw meaningful conclusions for an individual patient.


IEEE Transactions on Biomedical Engineering | 2013

Unsupervised Nosologic Imaging for Glioma Diagnosis

Yuqian Li; Diana M. Sima; S Van Cauter; Uwe Himmelreich; Anca Croitor Sava; Yiming Pi; Yipeng Liu; S. Van Huffel

In this letter a novel approach to create nosologic images of the brain using magnetic resonance spectroscopic imaging (MRSI) data in an unsupervised way is presented. Different tissue patterns are identified from the MRSI data using nonnegative matrix factorization and are then coded as different primary colors (i.e. red, green, and blue) in an RGB image, so that mixed tissue regions are automatically visualized as mixtures of primary colors. The approach is useful in assisting glioma diagnosis, where several tissue patterns such as normal, tumor, and necrotic tissue can be present in the same voxel/spectrum. Error-maps based on linear least squares estimation are computed for each nosologic image to provide additional reliability information, which may help clinicians in decision making. Tests on in vivo MRSI data show the potential of this new approach.


NMR in Biomedicine | 2011

Exploiting spatial information to estimate metabolite levels in two-dimensional MRSI of heterogeneous brain lesions.

Anca Croitor Sava; Diana M. Sima; Jean-Baptiste Poullet; Alan J. Wright; Arend Heerschap; Sabine Van Huffel

MRSI provides MR spectra from multiple adjacent voxels within a body volume represented as a two‐ or three‐dimensional matrix, allowing the measurement of the distribution of metabolites over this volume. The spectra of these voxels are usually analyzed one by one, without exploiting their spatial context. In this article, we present an advanced metabolite quantification method for MRSI data, in which the available spatial information is considered. A nonlinear least‐squares algorithm is proposed in which prior knowledge is included in the form of proximity constraints on the spectral parameters within a grid and optimized starting values. A penalty term that promotes a spatially smooth spectral parameter map is added to the fitting algorithm. This method is adaptive, in the sense that several sweeps through the grid are performed and each solution may tune some hyperparameters at run‐time. Simulation studies of MRSI data showed significantly improved metabolite estimates after the inclusion of spatial information. Improved metabolite maps were also demonstrated by applying the method to in vivo MRSI data. Overlapping peaks or peaks of compounds present at low concentration can be better quantified with the proposed method than with single‐voxel approaches. The new approach compares favorably against the multivoxel approach embedded in the well‐known quantification software LCModel. Copyright


Magnetic Resonance in Medicine | 2011

Ex vivo high resolution magic angle spinning metabolic profiles describe intratumoral histopathological tissue properties in adult human gliomas

A. Croitor Sava; M.C Martinez-Bisbal; S. Van Huffel; J.M Cerda; Diana M. Sima; Bernardo Celda

In gliomas one can observe distinct histopathological tissue properties, such as viable tumor cells, necrotic tissue or regions where the tumor infiltrates normal brain. A first screening between the different intratumoral histopathological tissue properties would greatly assist in correctly diagnosing and prognosing gliomas. The potential of ex vivo high resolution magic angle spinning spectroscopy in characterizing these properties is analyzed and the biochemical differences between necrosis, high cellularity and border tumor regions in adult human gliomas are investigated. Statistical studies applied on sets of metabolite concentrations and metabolite ratios extracted from 52 high resolution magic angle spinning recordings coming from patients with different grades of glial tumors show a strong correlation between the histopathological tissue properties and the considered metabolic profiles, regardless of the malignancy grade. The results are in agreement with the pathology obtained by the histopathological examination that succeeded the high resolution magic angle spinning measurements. The metabolite concentration set can better differentiate between the considered histopathological tissue properties compared to the ratios. Representative reference tissue models describing the metabolic behavior are extracted for characterizing the intratumoral tissue properties. The proposed metabolic profiles reflect that the metabolites behavior is interconnected, and typical biochemical patterns emerge for each histopathological tissue property. Magn Reson Med, 2011.


Journal of Lipid Research | 2011

Investigation of adipose tissues in Zucker rats using in vivo and ex vivo magnetic resonance spectroscopy

Elisa Mosconi; Marco Fontanella; Diana M. Sima; Sabine Van Huffel; Silvia Fiorini; Andrea Sbarbati; Pasquina Marzola

In vivo single-voxel magnetic resonance spectroscopy (MRS) at 4.7T and ex vivo high-resolution proton magnetic resonance spectroscopy (HR-NMR) at 500 MHz were used to study the composition of adipose tissues in Zucker obese and Zucker lean rats. Lipid composition was characterized by unsaturation and polyunsaturation indexes and mean chain lengths. In vitro experiments were conducted in known mixtures of triglycerides and oils in order to validate the method. To avoid inaccuracies due to partial peak overlapping in MRS, peak quantification was performed after fitting of spectral peaks by using the QUEST algorithm. The intensity of different spectral lines was also corrected for T2 relaxation. Albeit with different sensitivity and accuracy, both techniques revealed that white adipose tissue is characterized by lower unsaturation and polyunsaturation indexes in obese rats compared with controls. HR-NMR revealed similar differences in brown adipose tissue. The present findings confirm the hypothesis that obese and lean Zucker rats have different adipose tissue composition.

Collaboration


Dive into the Diana M. Sima's collaboration.

Top Co-Authors

Avatar

Sabine Van Huffel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Uwe Himmelreich

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anca Croitor Sava

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Frederik Maes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sofie Van Cauter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dirk Smeets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

S. Van Huffel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yiming Pi

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Nicolas Sauwen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Saurabh Jain

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge