Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Priscila Penso Pires is active.

Publication


Featured researches published by Diana Priscila Penso Pires.


Research in Microbiology | 2011

Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms

Diana Priscila Penso Pires; Sanna Sillankorva; A. Faustino; Joana Azeredo

Pseudomonas aeruginosa is a relevant opportunistic pathogen involved in nosocomial infections that frequently shows low antibiotic susceptibility. One of its virulence factors is associated with the ability to adhere to surfaces and form virulent biofilms. This work describes the isolation and characterization of lytic phages capable of infecting antibiotic-resistant P. aeruginosa strains. In addition, characterization of P. aeruginosa biofilms and the potential of newly isolated phages for planktonic and biofilm control was accessed. According to the results, the isolated phages showed different spectra of activity and efficiency of lysis. Four broad lytic phages were selected for infection of planktonic cells; however, despite their broad range of activity, two of the selected phages failed to efficiently control planktonic cultures. Therefore, only two phages (phiIBB-PAA2 and phiIBB-PAP21), highly capable of causing strong biomass reduction of planktonic cells, were tested against 24 h biofilms using a m.o.i. of 1. Both phages reduced approximately 1-2 log the biofilm population after 2 h of infection and reduction was further enhanced after 6 h of biofilm infection. However, biofilm cells of P. aeruginosa PAO1 acquired resistance to phiIBB-PAP21; consequently, an increase in the number of cells after 24 h of treatment was observed. Conversely, phage phiIB-PAA2 for P. aeruginosa ATCC10145 continued to destroy biofilm cells, even after 24 h of infection. In these biofilms, phages caused a 3 log reduction in the number of viable counts of biofilm cells.


Microbiology and Molecular Biology Reviews | 2016

Genetically Engineered Phages: a Review of Advances over the Last Decade

Diana Priscila Penso Pires; Sara Cleto; Sanna Sillankorva; Joana Azeredo; Timothy K. Lu

SUMMARY Soon after their discovery in the early 20th century, bacteriophages were recognized to have great potential as antimicrobial agents, a potential that has yet to be fully realized. The nascent field of phage therapy was adversely affected by inadequately controlled trials and the discovery of antibiotics. Although the study of phages as anti-infective agents slowed, phages played an important role in the development of molecular biology. In recent years, the increase in multidrug-resistant bacteria has renewed interest in the use of phages as antimicrobial agents. With the wide array of possibilities offered by genetic engineering, these bacterial viruses are being modified to precisely control and detect bacteria and to serve as new sources of antibacterials. In applications that go beyond their antimicrobial activity, phages are also being developed as vehicles for drug delivery and vaccines, as well as for the assembly of new materials. This review highlights advances in techniques used to engineer phages for all of these purposes and discusses existing challenges and opportunities for future work.


Applied Microbiology and Biotechnology | 2016

Bacteriophage-encoded depolymerases: their diversity and biotechnological applications

Diana Priscila Penso Pires; Hugo Alexandre Mendes Oliveira; Luís D. R. Melo; Sanna Sillankorva; Joana Azeredo

Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.


Journal of Virology | 2015

Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections

Diana Priscila Penso Pires; Diana Patrícia Andrade Vilas Boas; Sanna Sillankorva; Joana Azeredo

ABSTRACT Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aeruginosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.


Current Opinion in Microbiology | 2017

Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections

Diana Priscila Penso Pires; Ldr Melo; D Vilas Boas; Sanna Sillankorva; Joana Azeredo

The complex heterogeneous structure of biofilms confers to bacteria an important survival strategy. Biofilms are frequently involved in many chronic infections in consequence of their low susceptibility to antibiotics as well as resistance to host defences. The increasing need of novel and effective treatments to target these complex structures has led to a growing interest on bacteriophages (phages) as a strategy for biofilm control and prevention. Phages can be used alone, as a cocktail to broaden the spectra of activity, or in combination with other antimicrobials to improve their efficacy. Here, we summarize the studies involving the use of phages for the treatment or prevention of bacterial biofilms, highlighting the biofilm features that can be tackled with phages or combined therapy approaches.


Frontiers in Microbiology | 2017

A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors

Diana Priscila Penso Pires; Andreas Dötsch; Erin M. Anderson; Youai Hao; Cezar M. Khursigara; Joseph S. Lam; Sanna Sillankorva; Joana Azeredo

Antibiotic resistance constitutes one of the most serious threats to the global public health and urgently requires new and effective solutions. Bacteriophages are bacterial viruses increasingly recognized as being good alternatives to traditional antibiotic therapies. In this study, the efficacy of phages, targeting different cell receptors, against Pseudomonas aeruginosa PAO1 biofilm and planktonic cell cultures was evaluated over the course of 48 h. Although significant reductions in the number of viable cells were achieved for both cases, the high level of adaptability of the bacteria in response to the selective pressure caused by phage treatment resulted in the emergence of phage-resistant variants. To further investigate the genetic makeup of phage-resistant variants isolated from biofilm infection experiments, some of these bacteria were selected for phenotypic and genotypic characterization. Whole genome sequencing was performed on five phage-resistant variants and all of them carried mutations affecting the galU gene as well as one of pil genes. The sequencing analysis further revealed that three of the P. aeruginosa PAO1 variants carry large deletions (>200 kbp) in their genomes. Complementation of the galU mutants with wild-type galU in trans restored LPS expression on the bacterial cell surface of these bacterial strains and rendered the complemented strains to be sensitive to phages. This provides unequivocal evidence that inactivation of galU function was associated with resistance to the phages that uses LPS as primary receptors. Overall, this work demonstrates that P. aeruginosa biofilms can survive phage attack and develop phage-resistant variants exhibiting defective LPS production and loss of type IV pili that are well adapted to the biofilm mode of growth.


Genome Announcements | 2014

Complete Genome Sequence of the Pseudomonas aeruginosa Bacteriophage phiIBB-PAA2

Diana Priscila Penso Pires; Andrew M. Kropinski; Joana Azeredo; Sanna Sillankorva

ABSTRACT Pseudomonas aeruginosa phage phiIBB-PAA2 is a broad-host-range virus isolated from raw hospital sewage (Porto, Portugal). This phage has a terminally redundant (183 bp), 45,344-bp double-stranded DNA (dsDNA) genome encoding 66 coding sequences (CDSs) and 3 tRNAs. It belongs to the family Podoviridae and the genus Luz24likevirus.


Genome Announcements | 2015

Complete Genome Sequence of Pseudomonas aeruginosa Phage vB_PaeM_CEB_DP1.

Diana Priscila Penso Pires; Sanna Sillankorva; Andrew M. Kropinski; Timothy K. Lu; Joana Azeredo

ABSTRACT vB_PaeM_CEB_DP1 is a Pseudomonas aeruginosa bacteriophage (phage) belonging to the Pbunalikevirus genus of the Myoviridae family of phages. It was isolated from hospital sewage. vB_PaeM_CEB_DP1 is a double-stranded DNA (dsDNA) phage, with a genome of 66,158 bp, containing 89 predicted open reading frames.


Biofouling | 2013

Evaluation of the ability of C. albicans to form biofilm in the presence of phage-resistant phenotypes of P. aeruginosa

Diana Priscila Penso Pires; Sónia Carina Silva; Carina Almeida; Mariana Henriques; Erin M. Anderson; Joseph S. Lam; Sanna Sillankorva; Joana Azeredo

Pseudomonas aeruginosa and Candida albicans are disparate microbial species, but both are known to be opportunistic pathogens frequently associated with nosocomial infections. The aim of this study was to provide a better understanding of the interactions between these microorganisms in dual-species biofilms. Several bacteriophage-resistant P. aeruginosa phenotypes have been isolated and were used in dual-species mixed-biofilm studies. Twenty-four and 48 h mixed-biofilms were formed using the isolated phenotypes of phage-resistant P. aeruginosa and these were compared with similar experiments using other P. aeruginosa strains with a defined lipopolysaccharide (LPS) deficiency based on chromosomal knockout of specific LPS biosynthetic genes. Overall, the results showed that the variants of phage-resistant P. aeruginosa and LPS mutants were both less effective in inhibiting the growth of C. albicans in mixed-biofilms compared to the wild-type strains of P. aeruginosa. Conversely, the proliferation of P. aeruginosa was not influenced by the presence of C. albicans. In conclusion, the ability of strains of P. aeruginosa to inhibit the formation of a biofilm of C. albicans appears to be correlated with the LPS chain lengths of phenotypes of P. aeruginosa, suggesting that LPS has a suppressive effect on the growth of C. albicans.


Archive | 2018

Synthetic Biology to Engineer Bacteriophage Genomes

Ana Rita Costa; Catarina Milho; Joana Azeredo; Diana Priscila Penso Pires

Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

Collaboration


Dive into the Diana Priscila Penso Pires's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy K. Lu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge