Luís D. R. Melo
University of Minho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luís D. R. Melo.
Journal of Virology | 2013
Hugo Alexandre Mendes Oliveira; Luís D. R. Melo; Sílvio Roberto Branco Santos; Franklin L. Nobrega; E. C. Ferreira; Nuno Cerca; Joana Azeredo; Leon Kluskens
ABSTRACT Phages are recognized as the most abundant and diverse entities on the planet. Their diversity is determined predominantly by their dynamic adaptation capacities when confronted with different selective pressures in an endless cycle of coevolution with a widespread group of bacterial hosts. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that hinders their release into the environment and the opportunity to start a new infection cycle. Consequently, phages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan. In this work, we bring to light all phage endolysins found in completely sequenced double-stranded nucleic acid phage genomes and uncover clues that explain the phage-endolysin-host ecology that led phages to recruit unique and specialized endolysins.
Applied Microbiology and Biotechnology | 2016
Diana Priscila Penso Pires; Hugo Alexandre Mendes Oliveira; Luís D. R. Melo; Sanna Sillankorva; Joana Azeredo
Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.
Frontiers in Microbiology | 2016
Luís D. R. Melo; Nuno Cerca; Andrew M. Kropinski; Carina Almeida; Joana Azeredo; Sanna Sillankorva
Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium.
PLOS ONE | 2015
A. Oliveira; Marta Leite; Leon Kluskens; Sílvio Roberto Branco Santos; Luís D. R. Melo; Joana Azeredo
Endolysins, which are peptidoglycan-degrading enzymes expressed during the terminal stage of the reproduction cycle of bacteriophages, have great potential to control Gram-positive pathogens. This work describes the characterization of a novel endolysin (PlyPl23) encoded on the genome of Paenibacillus larvae phage phiIBB_Pl23 with high potential to control American foulbrood. This bacterial disease, caused by P. larvae, is widespread in North America and Europe and causes important economic losses in apiculture. The restriction to antibiotic residues in honey imposed by the EU legislation hinders its therapeutic use to combat American foulbrood and enforces the development of alternative antimicrobial methods. The new endolysin described herein has an N-acetylmuramoyl-L-alanine amidase catalytic domain and exhibits a broad-spectrum activity against common P. larvae genotypes. Moreover, the enzyme displays high antimicrobial activity in a range of pH that matches environmental conditions (pH between 5.0 and 7.0), showing its feasible application in the field. At pH 7.0, a concentration of 0.2 μM of enzyme was enough to lyse 104 CFU.mL-1 of P. larvae in no more than 2 h. The presence of sucrose and of the substances present in the larvae gut content did not affect the enzyme activity. Interestingly, an increase of activity was observed when PlyPl23 was previously incubated in royal jelly. Furthermore, in vivo safety evaluation assays demonstrated that this enzyme is not toxic to the bee larvae. The present work describes for the first time an endolysin encoded in a P. larvae phage that presents high potential to integrate a commercial product to control the problematic American foulbrood.
Genome Announcements | 2013
A. Oliveira; Luís D. R. Melo; Andrew M. Kropinski; Joana Azeredo
ABSTRACT Paenibacillus larvae is a Gram-positive bacterium that causes American foulbrood, an important disease in apiculture. We report the first complete genome sequence of a P. larvae phage, phiIBB_Pl23, isolated from a hive in northern Portugal. This phage belongs to the family Siphoviridae.
Journal of General Virology | 2014
Luís D. R. Melo; Sanna Sillankorva; Hans-Wolfgang Ackermann; Andrew M. Kropinski; Joana Azeredo; Nuno Cerca
Staphylococcus epidermidis is considered an important nosocomial pathogen, being very tolerant to the host immune system and antibiotherapy, particularly when in biofilms. Due to its high resistance, alternative antimicrobial strategies are under development. The use of bacteriophages is seen as an important strategy to combat pathogenic organisms. In this study, a S. epidermidis myovirus, SEP1, was isolated and characterized. The genome of this phage was sequenced and shown to be related peripherally to the genus Twortlikevirus. However, when compared with other phages of this genus, it showed DNA sequence identities no greater than 58.2 %. As opposed to other polyvalent viruses of the genus Twortlikevirus, SEP1 is highly specific to S. epidermidis strains. The good infectivity shown by this phage as well as its high lytic spectrum suggested that it might be a good candidate for therapeutic studies.
International Journal of Medical Microbiology | 2017
Dominik Schuster; Jasmin Rickmeyer; Mike Gajdiss; Thorsten Thye; Stephan Lorenzen; Marion Reif; Michaele Josten; Christiane Szekat; Luís D. R. Melo; Ricarda Maria Schmithausen; Florian Liegeois; Hans-Georg Sahl; Jean-Paul J. Gonzalez; Michael Nagel; Gabriele Bierbaum
The species Staphylococcus argenteus was separated recently from Staphylococcus aureus (Tong S.Y., F. Schaumburg, M.J. Ellington, J. Corander, B. Pichon, F. Leendertz, S.D. Bentley, J. Parkhill, D.C. Holt, G. Peters, and P.M. Giffard, 2015). The objective of this work was to characterise the genome of a non-human S. argenteus strain, which had been isolated from the faeces of a wild-living western lowland gorilla in Gabon, and analyse the spectrum of this species in matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The full genome sequence revealed a scarcity of virulence genes and absence of resistance genes, indicating a decreased virulence potential compared to S. aureus and the human methicillin-resistant S. argenteus isolate MSHR1132T. Spectra obtained by MALDI-TOF MS and the analysis of available sequences in the genome databases identified several MALDI-TOF MS signals that clearly differentiate S. argenteus, the closely related Staphylococcus schweitzeri and S. aureus. In conclusion, in the absence of biochemical tests that identify the three species, mass spectrometry should be employed as method of choice.
Journal of Microbiological Methods | 2013
Virginia Carvalhais; M. Delgado-Rastrollo; Luís D. R. Melo; Nuno Cerca
RNA quality is of utmost importance to perform gene expression quantification by qPCR. The classical methods used to determine RNA quality are based on electrophoresis and spectrophotometer assessment, namely A(260)/A(280) and A(260)/A(230) ratios. It was previously shown that due to the complex nature of Staphylococcus epidermidis biofilms, RNA extraction procedures could impact mRNA quality and thus accurate quantification. Herein, we contaminated and degraded RNA extracted from S. epidermidis biofilms, and assessed the effect on gene expression by qPCR. As expected, thermal degradation of RNA had a significant impact on gene expression on two out of the three tested genes. On the other hand, the contamination of the extracted RNA yielded an interesting result: while most contaminants did not changed the purity indicators or the integrity of RNA, significant changes on gene expression levels were found. This work confirms that poor RNA extraction has an important impact in qPCR quantification, emphasizing the consequences of carry-over contaminants on gene expression studies. Additionally, our results show that the parameters commonly used to assess the quality of extracted RNA from bacterial cultures seem to be insufficient to ensure reliable gene expression determination.
Frontiers in Microbiology | 2017
A. Oliveira; Henrique Ribeiro; Ana Catarina Silva; Maria Daniela Silva; Jéssica Carolina Sousa; Célia F. Rodrigues; Luís D. R. Melo; Ana Filipa Frutuoso Mendes Henriques; Sanna Sillankorva
Chronic wounds afford a hostile environment of damaged tissues that allow bacterial proliferation and further wound colonization. Escherichia coli is among the most common colonizers of infected wounds and it is a prolific biofilm former. Living in biofilm communities, cells are protected, become more difficult to control and eradicate, and less susceptible to antibiotic therapy. This work presents insights into the proceedings triggering E. coli biofilm control with phage, honey, and their combination, achieved through standard antimicrobial activity assays, zeta potential and flow cytometry studies and further visual insights sought by scanning electron microscopy and transmission electron microscopy. Two Portuguese honeys (PF2 and U3) with different floral origin and an E. coli-specific phage (EC3a), possessing depolymerase activity, were tested against 24- and 48-h-old biofilms. Synergic and additive effects were perceived in some phage–honey experiments. Combined therapy prompted similar phenomena in biofilm cells, visualized by electron microscopy, as the individual treatments. Honey caused minor membrane perturbations to complete collapse and consequent discharge of cytoplasmic content, and phage completely destroyed cells leaving only vesicle-like structures and debris. Our experiments show that the addition of phage to low honey concentrations is advantageous, and that even fourfold diluted honey combined with phage, presents no loss of antibacterial activity toward E. coli. Portuguese honeys possess excellent antibiofilm activity and may be potential alternative therapeutic agents in biofilm-related wound infection. Furthermore, to our knowledge this is the first study that assessed the impacts of phage–honey combinations in bacterial cells. The synergistic effect obtained was shown to be promising, since the antiviral effect of honey limits the emergence of phage resistant phenotypes.
Viruses | 2018
Luís D. R. Melo; Ana Catarina Brandão; Ergun Akturk; Sílvio Roberto Branco Santos; Joana Azeredo
Staphylococcus aureus is one of the most relevant opportunistic pathogens involved in many biofilm-associated diseases, and is a major cause of nosocomial infections, mainly due to the increasing prevalence of multidrug-resistant strains. Consequently, alternative methods to eradicate the pathogen are urgent. It has been previously shown that polyvalent staphylococcal kayviruses and their derived endolysins are excellent candidates for therapy. Here we present the characterization of a new bacteriophage: vB_SauM-LM12 (LM12). LM12 has a broad host range (>90%; 56 strains tested), and is active against several MRSA strains. The genome of LM12 is composed of a dsDNA molecule with 143,625 bp, with average GC content of 30.25% and codes for 227 Coding Sequences (CDSs). Bioinformatics analysis did not identify any gene encoding virulence factors, toxins, or antibiotic resistance determinants. Antibiofilm assays have shown that this phage significantly reduced the number of viable cells (less than one order of magnitude). Moreover, the encoded endolysin also showed activity against biofilms, with a consistent biomass reduction during prolonged periods of treatment (of about one order of magnitude). Interestingly, the endolysin was shown to be much more active against stationary-phase cells and suspended biofilm cells than against intact and scraped biofilms, suggesting that cellular aggregates protected by the biofilm matrix reduced protein activity. Both phage LM12 and its endolysin seem to have a strong antimicrobial effect and broad host range against S. aureus, suggesting their potential to treat S. aureus biofilm infections.