Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diane Brisson is active.

Publication


Featured researches published by Diane Brisson.


Gene Therapy | 2013

Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial.

Daniel Gaudet; Julie Méthot; S. Déry; Diane Brisson; C Essiembre; G Tremblay; Karine Tremblay; J. de Wal; Jaap Twisk; N. van den Bulk; V Sier-Ferreira; S. J. H. Van Deventer

We describe the 2-year follow-up of an open-label trial (CT-AMT-011–01) of AAV1-LPLS447X gene therapy for lipoprotein lipase (LPL) deficiency (LPLD), an orphan disease associated with chylomicronemia, severe hypertriglyceridemia, metabolic complications and potentially life-threatening pancreatitis. The LPLS447X gene variant, in an adeno-associated viral vector of serotype 1 (alipogene tiparvovec), was administered to 14 adult LPLD patients with a prior history of pancreatitis. Primary objectives were to assess the long-term safety of alipogene tiparvovec and achieve a ⩾40% reduction in fasting median plasma triglyceride (TG) at 3–12 weeks compared with baseline. Cohorts 1 (n=2) and 2 (n=4) received 3 × 1011 gc kg−1, and cohort 3 (n=8) received 1 × 1012 gc kg−1. Cohorts 2 and 3 also received immunosuppressants from the time of alipogene tiparvovec administration and continued for 12 weeks. Alipogene tiparvovec was well tolerated, without emerging safety concerns for 2 years. Half of the patients demonstrated a ⩾40% reduction in fasting TG between 3 and 12 weeks. TG subsequently returned to baseline, although sustained LPLS447X expression and long-term changes in TG-rich lipoprotein characteristics were noted independently of the effect on fasting plasma TG.


The New England Journal of Medicine | 2015

Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia

Daniel Gaudet; Veronica J. Alexander; Brenda F. Baker; Diane Brisson; Karine Tremblay; Walter Singleton; Richard S. Geary; Steven G. Hughes; Nicholas J. Viney; Mark J. Graham; Rosanne M. Crooke; Joseph L. Witztum; John D. Brunzell; John J. P. Kastelein

BACKGROUND Apolipoprotein C-III (APOC3) is a key regulator of plasma triglyceride levels. Elevated triglyceride levels are associated with a risk of adverse cardiovascular events and pancreatitis. ISIS 304801 is a second-generation antisense inhibitor of APOC3 synthesis. METHODS We conducted a randomized, double-blind, placebo-controlled, dose-ranging, phase 2 study to evaluate ISIS 304801 in untreated patients with fasting triglyceride levels between 350 mg per deciliter (4.0 mmol per liter) and 2000 mg per deciliter (22.6 mmol per liter) (ISIS 304801 monotherapy cohort), as well as in patients receiving stable fibrate therapy who had fasting triglyceride levels between 225 mg per deciliter (2.5 mmol per liter) and 2000 mg per deciliter (ISIS 304801-fibrate cohort). Eligible patients were randomly assigned to receive either ISIS 304801, at doses ranging from 100 to 300 mg, or placebo, once weekly for 13 weeks. The primary outcome was the percentage change in APOC3 level from baseline. RESULTS A total of 57 patients were treated in the ISIS 304801 monotherapy cohort (41 received active agent, and 16 received placebo), and 28 patients were treated in the ISIS 304801-fibrate cohort (20 received active agent, and 8 received placebo). The mean (±SD) baseline triglyceride levels in the two cohorts were 581±291 mg per deciliter (6.6±3.3 mmol per liter) and 376±188 mg per deciliter (4.2±2.1 mmol per liter), respectively. Treatment with ISIS 304801 resulted in dose-dependent and prolonged decreases in plasma APOC3 levels when the drug was administered as a single agent (decreases of 40.0±32.0% in the 100-mg group, 63.8±22.3% in the 200-mg group, and 79.6±9.3% in the 300-mg group, vs. an increase of 4.2±41.7% in the placebo group) and when it was administered as an add-on to fibrates (decreases of 60.2±12.5% in the 200-mg group and 70.9±13.0% in the 300-mg group, vs. a decrease of 2.2±25.2% in the placebo group). Concordant reductions of 31.3 to 70.9% were observed in triglyceride levels. No safety concerns were identified in this short-term study. CONCLUSIONS We found that treatment with ISIS 304801 was associated with significant lowering of triglyceride levels, among patients with a broad range of baseline levels, through selective antisense inhibition of APOC3 synthesis. (Funded by Isis Pharmaceuticals; ClinicalTrials.gov number, NCT01529424.).


The New England Journal of Medicine | 2014

Targeting APOC3 in the Familial Chylomicronemia Syndrome

Daniel Gaudet; Diane Brisson; Karine Tremblay; Veronica J. Alexander; Walter Singleton; Steven G. Hughes; Richard S. Geary; Brenda F. Baker; Mark J. Graham; Rosanne M. Crooke; Joseph L. Witztum

The familial chylomicronemia syndrome is a genetic disorder characterized by severe hypertriglyceridemia and recurrent pancreatitis due to a deficiency in lipoprotein lipase (LPL). Currently, there are no effective therapies except for extreme restriction in the consumption of dietary fat. Apolipoprotein C-III (APOC3) is known to inhibit LPL, although there is also evidence that APOC3 increases the level of plasma triglycerides through an LPL-independent mechanism. We administered an inhibitor of APOC3 messenger RNA (mRNA), called ISIS 304801, to treat three patients with the familial chylomicronemia syndrome and triglyceride levels ranging from 1406 to 2083 mg per deciliter (15.9 to 23.5 mmol per liter). After 13 weeks of study-drug administration, plasma APOC3 levels were reduced by 71 to 90% and triglyceride levels by 56 to 86%. During the study, all patients had a triglyceride level of less than 500 mg per deciliter (5.7 mmol per liter) with treatment. These data support the role of APOC3 as a key regulator of LPL-independent pathways of triglyceride metabolism.


Diabetes Care | 2010

Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism, During Pregnancy

Luigi Bouchard; Stéphanie Thibault; Simon-Pierre Guay; Marta Santuré; Alexandre Monpetit; Julie St-Pierre; Patrice Perron; Diane Brisson

OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes.


Epigenetics | 2013

Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases

Stephanie-May Ruchat; Andrée-Anne Houde; Gregory Voisin; Julie St-Pierre; Patrice Perron; Jean-Patrice Baillargeon; Daniel Gaudet; Marie-France Hivert; Diane Brisson; Luigi Bouchard

Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring’s methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24–28 weeks of pregnancy. DNA methylation was measured at > 485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10−06; none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10−13 < p < 4.0 × 10−03; including diabetes mellitus p = 4.3 × 10−11). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming.


Diabetes | 2012

Placental Adiponectin Gene DNA Methylation Levels Are Associated With Mothers’ Blood Glucose Concentration

Luigi Bouchard; Marie-France Hivert; Simon-Pierre Guay; Julie St-Pierre; Patrice Perron; Diane Brisson

Growing evidence suggests that epigenetic profile changes occurring during fetal development in response to in utero environment variations could be one of the mechanisms involved in the early determinants of adult chronic diseases. In this study, we tested whether maternal glycemic status is associated with the adiponectin gene (ADIPOQ) DNA methylation profile in placenta tissue, in maternal circulating blood cells, and in cord blood cells. We found that lower DNA methylation levels in the promoter of ADIPOQ on the fetal side of the placenta were correlated with higher maternal glucose levels during the second trimester of pregnancy (2-h glucose after the oral glucose tolerance test; rs ≤ −0.21, P < 0.05). Lower DNA methylation levels on the maternal side of the placenta were associated with higher insulin resistance index (homeostasis model assessment of insulin resistance) during the second and third trimesters of pregnancy (rs ≤ −0.27, P < 0.05). Finally, lower DNA methylation levels were associated with higher maternal circulating adiponectin levels throughout pregnancy (rs ≤ −0.26, P < 0.05). In conclusion, the ADIPOQ DNA methylation profile was associated with maternal glucose status and with maternal circulating adiponectin concentration. Because adiponectin is suspected to have insulin-sensitizing proprieties, these epigenetic adaptations have the potential to induce sustained glucose metabolism changes in the mother and offspring later in life.


Arthritis Care and Research | 2012

Rarity of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies in statin users, including those with self-limited musculoskeletal side effects.

Andrew L. Mammen; Katherine Pak; Emma K. Williams; Diane Brisson; Joe Coresh; Elizabeth Selvin; Daniel Gaudet

Statins, among the most commonly prescribed medications, are associated with a wide range of musculoskeletal side effects. These include a progressive autoimmune myopathy with anti–3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase (anti‐HMGCR) antibodies that requires immunosuppression. However, it remains unknown whether these antibodies are found in statin users with and without self‐limited musculoskeletal side effects; this limits their diagnostic utility. The current work assessed the prevalence of anti‐HMGCR antibodies in these groups of statin users.


Atherosclerosis Supplements | 2010

Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency

Daniel Gaudet; Janneke de Wal; Karine Tremblay; S. Déry; Sander J. H. van Deventer; Andreas Freidig; Diane Brisson; Julie Méthot

Alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy is developed to prevent complications and decrease the clinical morbidity of lipoprotein lipase deficiency (LPLD). LPLD is an autosomal recessive disease associated with severe hypertriglyceridemia (hyperTG), severe chylomicronaemia, and low HDL. Acute pancreatitis, the most frequent serious clinical LPLD complication, is a complex and heterogeneous inflammatory condition having many causes including hyperTG and chylomicronaemia. In many patients, low fat diet and currently available lipid lowering drugs are ineffective to prevent hyperTG or pancreatitis in LPLD. The clinical development program of alipogene tiparvovec includes observational studies as well as phase I/II and II/III clinical trials. Pooled data are collected on safety and efficacy issues, including the incidence of pancreatitis.


The Journal of Clinical Endocrinology and Metabolism | 2012

Effect of Alipogene Tiparvovec (AAV1-LPLS447X) on Postprandial Chylomicron Metabolism in Lipoprotein Lipase-Deficient Patients

André C. Carpentier; Frédérique Frisch; Sébastien M. Labbé; René Gagnon; Janneke de Wal; Stephen Greentree; Harald Petry; Jaap Twisk; Diane Brisson; Daniel Gaudet

BACKGROUND Lipoprotein lipase-deficient (LPLD) individuals display marked chylomicronemia and hypertriglyceridemia associated with increased pancreatitis risk. The aim of this study was to determine the effect of i.m. administration of an adeno-associated viral vector (AAV1) for expression of LPL(S447X) in muscle (alipogene tiparvovec, AAV1-LPL(S447X)) on postprandial chylomicron metabolism and on nonesterified fatty acid (NEFA) and glycerol metabolism in LPLD individuals. METHODOLOGY In an open-label clinical trial (CT-AMT-011-02), LPLD subjects were administered alipogene tiparvovec at a dose of 1 × 10(12) genome copies per kilogram. Two weeks before and 14 wk after administration, chylomicron metabolism and plasma palmitate and glycerol appearance rates were determined after ingestion of a low-fat meal containing (3)H-palmitate, combined with (continuous) iv infusion of [U-(13)C]palmitate and [1,1,2,3,3-(2)H]glycerol. PRINCIPAL FINDINGS After administration of alipogene tiparvovec, the triglyceride (TG) content of the chylomicron fraction and the chylomicron-TG/total plasma TG ratio were reduced throughout the postprandial period. The postprandial peak chylomicron (3)H level and chylomicron (3)H area under the curve were greatly reduced (by 79 and 93%, 6 and 24 h after the test meal, respectively). There were no significant changes in plasma NEFA and glycerol appearance rates. Plasma glucose, insulin, and C-peptide also did not change. CONCLUSIONS/SIGNIFICANCE Intramuscular administration of alipogene tiparvovec resulted in a significant improvement of postprandial chylomicron metabolism in LPLD patients, without inducing large postprandial NEFA spillover.


Arthritis Care and Research | 2012

Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy.

Andrew L. Mammen; Daniel Gaudet; Diane Brisson; Lisa Christopher-Stine; Thomas E. Lloyd; Mary S. Leffell; Andrea A. Zachary

To investigate the association of anti–hydroxymethylglutaryl‐coenzyme A reductase (anti‐HMGCR) myopathy with HLA class I and II antigens.

Collaboration


Dive into the Diane Brisson's collaboration.

Top Co-Authors

Avatar

Daniel Gaudet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Bouchard

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Patrice Perron

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Julie Méthot

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge