Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-France Hivert is active.

Publication


Featured researches published by Marie-France Hivert.


PLOS Genetics | 2012

Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.

Zari Dastani; Marie-France Hivert; John Perry; Robert A. Scott; Peter Henneman; M. Heid; Christian Fuchsberger; Toshiko Tanaka; Andrew P. Morris; Aaron Isaacs; Kurt Lohman; James S. Pankow; David Evans; Beate St; Stefania Bandinelli; Olga D. Carlson; Josephine M. Egan; Britt-Marie Loo; Toby Johnson; Robert K. Semple; Tanya M. Teslovich; Matthew A. Allison; Susan Redline; Sarah G. Buxbaum; Karen L. Mohlke; Ingrid Meulenbelt; Christie M. Ballantyne; George Dedoussis; Frank B. Hu; Yongmei Liu

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.


The Journal of Clinical Endocrinology and Metabolism | 2008

Associations of Adiponectin, Resistin, and Tumor Necrosis Factor-α with Insulin Resistance

Marie-France Hivert; Lisa M. Sullivan; Caroline S. Fox; David M. Nathan; Ralph B. D'Agostino; Peter W.F. Wilson; James B. Meigs

CONTEXT Adipose tissue-derived adipokines may contribute to insulin resistance. OBJECTIVE We tested the hypothesis that adipokines are associated with insulin resistance in a community-based cohort and that associations are maintained in people with and without the metabolic syndrome (high vs. low risk of diabetes). DESIGN, SETTING, AND PARTICIPANTS We studied a cross-sectional sample of 2356 individuals attending the seventh examination (1998-2001) of the Framingham Offspring Study. We measured levels of glucose, insulin, adiponectin, resistin, and TNFalpha in fasting blood samples and defined metabolic syndrome by updated National Cholesterol Education Program criteria. We used ANOVA to test associations of adipokines with insulin resistance and multivariable logistic regression models to assess joint associations of adipokines and metabolic syndrome with insulin resistance. MAIN OUTCOME MEASURE Homeostasis model (HOMA-IR), with insulin resistance defined by HOMA-IR greater than the 75th percentile, was measured. RESULTS Age- and sex-adjusted HOMA-IR levels were inversely related to adiponectin (r = -0.40, P < 0.0001) and positively related to resistin (r = 0.13, P < 0.0001) and TNFalpha (r = 0.12, P < 0.0001). The prevalence of insulin resistance increased with decreasing tertiles of adiponectin (from 10.9% in the third to 42.5% in the first tertile; P < 0.0001) and increasing tertiles of resistin (from 19.3 to 30.9%; P < 0.0001) and TNFalpha (from 18.8 to 32.0%; P < 0.0001). Results were similar after adjustment for body mass index. These associations were present in individuals with or without the metabolic syndrome. In multivariable regression models, metabolic syndrome and adipokines individually and jointly were significantly associated with insulin resistance. CONCLUSION Adverse levels of adipokines are associated with insulin resistance in individuals at low or high diabetes risk.


Circulation | 2016

Sedentary behavior and cardiovascular morbidity and mortality: A science advisory from the American Heart Association

Deborah Rohm Young; Marie-France Hivert; Sofiya Alhassan; Sarah M. Camhi; Jane F. Ferguson; Peter T. Katzmarzyk; Cora E. Lewis; Neville Owen; Cynthia K. Perry; Juned Siddique; Celina M. Yong

Epidemiological evidence is accumulating that indicates greater time spent in sedentary behavior is associated with all-cause and cardiovascular morbidity and mortality in adults such that some countries have disseminated broad guidelines that recommend minimizing sedentary behaviors. Research examining the possible deleterious consequences of excess sedentary behavior is rapidly evolving, with the epidemiology-based literature ahead of potential biological mechanisms that might explain the observed associations. This American Heart Association science advisory reviews the current evidence on sedentary behavior in terms of assessment methods, population prevalence, determinants, associations with cardiovascular disease incidence and mortality, potential underlying mechanisms, and interventions. Recommendations for future research on this emerging cardiovascular health topic are included. Further evidence is required to better inform public health interventions and future quantitative guidelines on sedentary behavior and cardiovascular health outcomes.


Diabetes | 2014

Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity

Antigone S. Dimas; Vasiliki Lagou; Adam Barker; Joshua W. Knowles; Reedik Mägi; Marie-France Hivert; Andrea Benazzo; Denis Rybin; Anne U. Jackson; Heather M. Stringham; Ci Song; Antje Fischer-Rosinsky; Trine Welløv Boesgaard; Niels Grarup; Fahim Abbasi; Themistocles L. Assimes; Ke Hao; Xia Yang; Cécile Lecoeur; Inês Barroso; Lori L. Bonnycastle; Yvonne Böttcher; Suzannah Bumpstead; Peter S. Chines; Michael R. Erdos; Jürgen Graessler; Peter Kovacs; Mario A. Morken; Felicity Payne; Alena Stančáková

Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.


Atherosclerosis | 2010

Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: Results of genome-wide association analyses including 4659 European individuals

Iris M. Heid; Peter Henneman; Andrew A. Hicks; Stefan Coassin; Thomas W. Winkler; Yurii S. Aulchenko; Christian Fuchsberger; Kijoung Song; Marie-France Hivert; Dawn M. Waterworth; Nicholas J. Timpson; J. Brent Richards; John Perry; Toshiko Tanaka; Najaf Amin; Barbara Kollerits; Irene Pichler; Ben A. Oostra; Barbara Thorand; Rune R. Frants; Thomas Illig; Josée Dupuis; Beate Glaser; Tim D. Spector; Jack M. Guralnik; Josephine M. Egan; Jose C. Florez; David Evans; Nicole Soranzo; Stefania Bandinelli

OBJECTIVE Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. METHODS We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0 x 10(-4) for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. RESULTS The ADIPOQ locus showed genome-wide significant p-values in the combined (p=4.3 x 10(-24)) as well as in both women- and men-specific analyses (p=8.7 x 10(-17) and p=2.5 x 10(-11), respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p>0.01). CONCLUSIONS We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin.


Epigenetics | 2013

Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases

Stephanie-May Ruchat; Andrée-Anne Houde; Gregory Voisin; Julie St-Pierre; Patrice Perron; Jean-Patrice Baillargeon; Daniel Gaudet; Marie-France Hivert; Diane Brisson; Luigi Bouchard

Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring’s methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24–28 weeks of pregnancy. DNA methylation was measured at > 485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10−06; none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10−13 < p < 4.0 × 10−03; including diabetes mellitus p = 4.3 × 10−11). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming.


Diabetes | 2012

Placental Adiponectin Gene DNA Methylation Levels Are Associated With Mothers’ Blood Glucose Concentration

Luigi Bouchard; Marie-France Hivert; Simon-Pierre Guay; Julie St-Pierre; Patrice Perron; Diane Brisson

Growing evidence suggests that epigenetic profile changes occurring during fetal development in response to in utero environment variations could be one of the mechanisms involved in the early determinants of adult chronic diseases. In this study, we tested whether maternal glycemic status is associated with the adiponectin gene (ADIPOQ) DNA methylation profile in placenta tissue, in maternal circulating blood cells, and in cord blood cells. We found that lower DNA methylation levels in the promoter of ADIPOQ on the fetal side of the placenta were correlated with higher maternal glucose levels during the second trimester of pregnancy (2-h glucose after the oral glucose tolerance test; rs ≤ −0.21, P < 0.05). Lower DNA methylation levels on the maternal side of the placenta were associated with higher insulin resistance index (homeostasis model assessment of insulin resistance) during the second and third trimesters of pregnancy (rs ≤ −0.27, P < 0.05). Finally, lower DNA methylation levels were associated with higher maternal circulating adiponectin levels throughout pregnancy (rs ≤ −0.26, P < 0.05). In conclusion, the ADIPOQ DNA methylation profile was associated with maternal glucose status and with maternal circulating adiponectin concentration. Because adiponectin is suspected to have insulin-sensitizing proprieties, these epigenetic adaptations have the potential to induce sustained glucose metabolism changes in the mother and offspring later in life.


Diabetes | 2011

Updated Genetic Score Based on 34 Confirmed Type 2 Diabetes Loci Is Associated With Diabetes Incidence and Regression to Normoglycemia in the Diabetes Prevention Program

Marie-France Hivert; Kathleen A. Jablonski; Leigh Perreault; Richa Saxena; Jarred B. McAteer; Paul W. Franks; Richard F. Hamman; Steven E. Kahn; Steven M. Haffner; James B. Meigs; David Altshuler; William C. Knowler; Jose C. Florez

OBJECTIVE Over 30 loci have been associated with risk of type 2 diabetes at genome-wide statistical significance. Genetic risk scores (GRSs) developed from these loci predict diabetes in the general population. We tested if a GRS based on an updated list of 34 type 2 diabetes–associated loci predicted progression to diabetes or regression toward normal glucose regulation (NGR) in the Diabetes Prevention Program (DPP). RESEARCH DESIGN AND METHODS We genotyped 34 type 2 diabetes–associated variants in 2,843 DPP participants at high risk of type 2 diabetes from five ethnic groups representative of the U.S. population, who had been randomized to placebo, metformin, or lifestyle intervention. We built a GRS by weighting each risk allele by its reported effect size on type 2 diabetes risk and summing these values. We tested its ability to predict diabetes incidence or regression to NGR in models adjusted for age, sex, ethnicity, waist circumference, and treatment assignment. RESULTS In multivariate-adjusted models, the GRS was significantly associated with increased risk of progression to diabetes (hazard ratio [HR] = 1.02 per risk allele [95% CI 1.00–1.05]; P = 0.03) and a lower probability of regression to NGR (HR = 0.95 per risk allele [95% CI 0.93–0.98]; P < 0.0001). At baseline, a higher GRS was associated with a lower insulinogenic index (P < 0.001), confirming an impairment in β-cell function. We detected no significant interaction between GRS and treatment, but the lifestyle intervention was effective in the highest quartile of GRS (P < 0.0001). CONCLUSIONS A high GRS is associated with increased risk of developing diabetes and lower probability of returning to NGR in high-risk individuals, but a lifestyle intervention attenuates this risk.


Diabetes | 2008

Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: the Framingham Offspring Study.

Marie-France Hivert; Alisa K. Manning; Jarred B. McAteer; Jose C. Florez; Josée Dupuis; Caroline S. Fox; Christopher J. O'Donnell; L. Adrienne Cupples; James B. Meigs

OBJECTIVE— Variants in ADIPOQ have been inconsistently associated with adiponectin levels or diabetes. Using comprehensive linkage disequilibrium mapping, we genotyped single nucleotide polymorphisms (SNPs) in ADIPOQ to evaluate the association of common variants with adiponectin levels and risk of diabetes. RESEARCH DESIGN AND METHODS— Participants in the Framingham Offspring Study (n = 2,543, 53% women) were measured for glycemic phenotypes and incident diabetes over 28 years of follow-up; adiponectin levels were quantified at exam 7. We genotyped 22 tag SNPs that captured common (minor allele frequency >0.05) variation at r2 > 0.8 across ADIPOQ plus 20 kb 5′ and 10 kb 3′ of the gene. We used linear mixed effects models to test additive associations of each SNP with adiponectin levels and glycemic phenotypes. Hazard ratios (HRs) for incident diabetes were estimated using an adjusted Cox proportional hazards model. RESULTS— Two promoter SNPs in strong linkage disequilibrium with each other (r2 = 0.80) were associated with adiponectin levels (rs17300539; Pnominal [Pn] = 2.6 × 10−8; Pempiric [Pe] = 0.0005 and rs822387; Pn = 3.8 × 10−5; Pe = 0.001). A 3′-untranslated region (3′UTR) SNP (rs6773957) was associated with adiponectin levels (Pn = 4.4 × 10−4; Pe = 0.005). A nonsynonymous coding SNP (rs17366743, Y111H) was confirmed to be associated with diabetes incidence (HR 1.94 [95% CI 1.16–3.25] for the minor C allele; Pn = 0.01) and with higher mean fasting glucose over 28 years of follow-up (Pn = 0.0004; Pe = 0.004). No other significant associations were found with other adiposity and metabolic phenotypes. CONCLUSIONS— Adiponectin levels are associated with SNPs in two different regulatory regions (5′ promoter and 3′UTR), whereas diabetes incidence and time-averaged fasting glucose are associated with a missense SNP of ADIPOQ.


PLOS Genetics | 2009

A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels

J. Brent Richards; Dawn M. Waterworth; Stephen O'Rahilly; Marie-France Hivert; Ruth J. F. Loos; John Perry; Toshiko Tanaka; Nicholas J. Timpson; Robert K. Semple; Nicole Soranzo; Kijoung Song; Nuno Rocha; Elin Grundberg; Josée Dupuis; Jose C. Florez; Claudia Langenberg; Inga Prokopenko; Richa Saxena; Robert Sladek; Yurii S. Aulchenko; David Evans; Gérard Waeber; Jeanette Erdmann; Mary-Susan Burnett; Naveed Sattar; Joseph M. Devaney; Christina Willenborg; Aroon D. Hingorani; Jaquelin C. M. Witteman; Peter Vollenweider

The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.

Collaboration


Dive into the Marie-France Hivert's collaboration.

Top Co-Authors

Avatar

Patrice Perron

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Luigi Bouchard

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myriam Doyon

Centre Hospitalier Universitaire de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge