Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diane de Zelicourt is active.

Publication


Featured researches published by Diane de Zelicourt.


Annals of Biomedical Engineering | 2005

Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows—A TCPC Case Study

Kerem Pekkan; Diane de Zelicourt; Liang Ge; Fotis Sotiropoulos; David H. Frakes; Mark A. Fogel; Ajit P. Yoganathan

Recent developments in medical image acquisition combined with the latest advancements in numerical methods for solving the Navier-Stokes equations have created unprecedented opportunities for developing simple and reliable computational fluid dynamics (CFD) tools for meeting patient-specific surgical planning objectives. However, for CFD to reach its full potential and gain the trust and confidence of medical practitioners, physics-driven numerical modeling is required. This study reports on the experience gained from an ongoing integrated CFD modeling effort aimed at developing an advanced numerical simulation tool capable of accurately predicting flow characteristics in an anatomically correct total cavopulmonary connection (TCPC). An anatomical intra-atrial TCPC model is reconstructed from a stack of magnetic resonance (MR) images acquired in vivo. An exact replica of the computational geometry was built using transparent rapid prototyping. Following the same approach as in earlier studies on idealized models, flow structures, pressure drops, and energy losses were assessed both numerically and experimentally, then compared. Numerical studies were performed with both a first-order accurate commercial software and a recently developed, second-order accurate, in-house flow solver. The commercial CFD model could, with reasonable accuracy, capture global flow quantities of interest such as control volume power losses and pressure drops and time-averaged flow patterns. However, for steady inflow conditions, both flow visualization experiments and particle image velocimetry (PIV) measurements revealed unsteady, complex, and highly 3D flow structures, which could not be captured by this numerical model with the available computational resources and additional modeling efforts that are described. Preliminary time-accurate computations with the in-house flow solver were shown to capture for the first time these complex flow features and yielded solutions in good agreement with the experimental observations. Flow fields obtained were similar for the studied total cardiac output range (1–3 l/min); however hydrodynamic power loss increased dramatically with increasing cardiac output, suggesting significant energy demand at exercise conditions. The simulation of cardiovascular flows poses a formidable challenge to even the most advanced CFD tools currently available. A successful prediction requires a two-pronged, physics-based approach, which integrates high-resolution CFD tools and high-resolution laboratory measurements.


Medical & Biological Engineering & Computing | 2008

Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM)

Kerem Pekkan; Brian Whited; Kirk R. Kanter; Shiva Sharma; Diane de Zelicourt; Kartik S. Sundareswaran; David H. Frakes; Jarek Rossignac; Ajit P. Yoganathan

The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human–shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement “manual hemodynamic optimization” at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.


Asaio Journal | 2005

Coupling Pediatric Ventricle Assist Devices to the Fontan Circulation: Simulations with a Lumped-Parameter Model

Kerem Pekkan; David H. Frakes; Diane de Zelicourt; Carol Lucas; W. James Parks; Ajit P. Yoganathan

In pediatric ventricular assist device (VAD) design, the process of matching device characteristics and dimensions to the relevant disease conditions poses a formidable challenge because the disease spectrum is more highly varied than for adult applications. One example arises with single-ventricle congenital defects, which demand palliative surgeries that create elevated systemic venous pressure and altered pulmonary hemodynamics. Substituting a mechanical pump as a right ventricle has long been proposed to eliminate the associated early and postoperative anomalies. A pulsatile lumped-parameter model of the single-ventricle circulation was developed to guide the preliminary design studies. Two special modules, the pump characteristics and the total cavopulmonary connection (TCPC) module, are introduced. The TCPC module incorporates the results of three-dimensional patient-specific computational fluid dynamics calculations, where the pressure drop in the TCPC anastomosis is calculated at the equal vascular lung resistance operating point for different cardiac outputs at a steady 60/40 inferior vena cava/superior vena cava flow split. Preliminary results obtained with the adult parameters are presented with no ventricle remodeling or combined larger-size single ventricle. A detailed literature review of single-ventricle function is provided. Coupling a continuous pump to the single-ventricle circulation brought both the pulmonary and systemic venous pressures back to manageable levels. Selected VADs provided an acceptable cardiac output trace of the single left ventricle, after initial transients. Remodeling of the systemic venous compliance plays a critical role in performance and is included in this study. Pulsatile operation mode with rotational speed regulation highlighted the importance of TCPC and pulmonary artery compliances. Four different pumps and three patient-specific anatomical TCPC pathologies were studied. Magnitudes of the equivalent TCPC resistances were found to be comparable to the vascular resistances of the normal baseline circulation, significantly affecting both the VAD design and hemodynamics.


Circulation | 2005

Total Cavopulmonary Connection Flow With Functional Left Pulmonary Artery Stenosis Angioplasty and Fenestration In Vitro

Kerem Pekkan; Hiroumi D. Kitajima; Diane de Zelicourt; Joseph M. Forbess; W. James Parks; Mark A. Fogel; Shiva Sharma; Kirk R. Kanter; David H. Frakes; Ajit P. Yoganathan

Background— In our multicenter study of the total cavopulmonary connection (TCPC), a cohort of patients with long-segment left pulmonary artery (LPA) stenosis was observed (35%). The clinically recognized detrimental effects of LPA stenosis motivated a computational fluid dynamic simulation study within 3-dimensional patient-specific and idealized TCPC pathways. The goal of this study was to quantify and evaluate the hemodynamic impact of LPA stenosis and to judge interventional strategies aimed at treating it. Methods and Results— Simulations were conducted at equal vascular lung resistance, modeling both discrete stenosis (DS) and diffuse long-segment hypoplasia with varying degrees of obstruction (0% to 80%). Models having fenestrations of 2 to 6 mm and atrium pressures of 4 to 14 mm Hg were explored. A patient-specific, extracardiac TCPC with 85% DS was studied in its original configuration and after virtual surgery that dilated the LPA to 0% stenosis in the computer medium. Performance indices improved exponentially (R2>0.99) with decreasing obstruction. Diffuse long-segment hypoplasia was ≈50% more severe with regard to lung perfusion and cardiac energy loss than DS. Virtual angioplasty performed on the 3-dimensional Fontan anatomy exhibiting an 85% DS stenosis produced a 61% increase in left lung perfusion and a 50% decrease in cardiac energy dissipation. After 4-mm fenestration, TCPC baffle pressure dropped by ≈10% and left lung perfusion decreased by ≈8% compared with the 80% DS case. Conclusions— DS <60% and diffuse long-segment hypoplasia <40% could be considered tolerable because both resulted in only a 12% decrease in left lung perfusion. In contrast to angioplasty, a fenestration (right-to-left shunt) reduced TCPC pressure at the cost of decreased left and right lung perfusion. These results suggest that pre-Fontan computational fluid dynamic simulation may be valuable for determining both the hemodynamic significance of LPA stenosis and the potential benefits of intervention.


Jacc-cardiovascular Imaging | 2009

Correction of Pulmonary Arteriovenous Malformation Using Image-Based Surgical Planning

Kartik S. Sundareswaran; Diane de Zelicourt; Shiva Sharma; Kirk R. Kanter; Thomas L. Spray; Jarek Rossignac; Fotis Sotiropoulos; Mark A. Fogel; Ajit P. Yoganathan

The objectives of this study were to develop an image-based surgical planning framework that 1) allows for in-depth analysis of pre-operative hemodynamics by the use of cardiac magnetic resonance and 2) enables surgeons to determine the optimum surgical scenarios before the operation. This framework is tailored for applications in which post-operative hemodynamics are important. In particular, it is exemplified here for a Fontan patient with severe left pulmonary arteriovenous malformations due to abnormal hepatic flow distribution to the lungs. Patients first undergo cardiac magnetic resonance for 3-dimensional anatomy and flow reconstruction. After analysis of the pre-operative flow fields, the 3-dimensional anatomy is imported into an interactive surgical planning interface for the surgeon to virtually perform multiple surgical scenarios. Associated hemodynamics are predicted by the use of a fully validated computational fluid dynamic solver. Finally, efficiency metrics (e.g., pressure decrease and hepatic flow distribution) are weighted against surgical feasibility to determine the optimal surgical option.


Journal of Biomechanical Engineering-transactions of The Asme | 2005

Single-step stereolithography of complex anatomical models for optical flow measurements.

Diane de Zelicourt; Kerem Pekkan; Hiroumi D. Kitajima; David Harold Frakes; Ajit P. Yoganathan

Transparent stereolithographic rapid prototyping (RP) technology has already demonstrated in literature to be a practical model construction tool for optical flow measurements such as digital particle image velocimetry (DPIV), laser doppler velocimetry (LDV), and flow visualization. Here, we employ recently available transparent RP resins and eliminate time-consuming casting and chemical curing steps from the traditional approach. This note details our methodology with relevant material properties and highlights its advantages. Stereolithographic model printing with our procedure is now a direct single-step process, enabling faster geometric replication of complex computational fluid dynamics (CFD) models for exact experimental validation studies. This methodology is specifically applied to the in vitro flow modeling of patient-specific total cavopulmonary connection (TCPC) morphologies. The effect of RP machining grooves, surface quality, and hydrodynamic performance measurements as compared with the smooth glass models are also quantified.


Annals of Biomedical Engineering | 2007

Progress in the CFD Modeling of Flow Instabilities in Anatomical Total Cavopulmonary Connections

Chang Wang; Kerem Pekkan; Diane de Zelicourt; Marc Horner; Ajay Parihar; Ashish Kulkarni; Ajit P. Yoganathan

Intrinsic flow instability has recently been reported in the blood flow pathways of the surgically created total-cavopulmonary connection. Besides its contribution to the hydrodynamic power loss and hepatic blood mixing, this flow unsteadiness causes enormous challenges in its computational fluid dynamics (CFD) modeling. This paper investigates the applicability of hybrid unstructured meshing and solver options of a commercially available CFD package (FLUENT, ANSYS Inc., NH) to model such complex flows. Two patient-specific anatomies with radically different transient flow dynamics are studied both numerically and experimentally (via unsteady particle image velocimetry and flow visualization). A new unstructured hybrid mesh layout consisting of an internal core of hexahedral elements surrounded by transition layers of tetrahedral elements is employed to mesh the flow domain. The numerical simulations are carried out using the parallelized second-order accurate upwind scheme of FLUENT. The numerical validation is conducted in two stages: first, by comparing the overall flow structures and velocity magnitudes of the numerical and experimental flow fields, and then by comparing the spectral content at different points in the connection. The numerical approach showed good quantitative agreement with experiment, and total simulation time was well within a clinically relevant time-scale of our surgical planning application. It also further establishes the ability to conduct accurate numerical simulations using hybrid unstructured meshes, a format that is attractive if one ever wants to pursue automated flow analysis in a large number of complex (patient-specific) geometries.


The Journal of Thoracic and Cardiovascular Surgery | 2011

Pulmonary hepatic flow distribution in total cavopulmonary connections: extracardiac versus intracardiac.

Lakshmi Prasad Dasi; Kevin K. Whitehead; Kerem Pekkan; Diane de Zelicourt; Kartik S. Sundareswaran; Kirk R. Kanter; Mark A. Fogel; Ajit P. Yoganathan

OBJECTIVE Pulmonary arteriovenous malformations can occur after the Fontan procedure and are believed to be associated with disproportionate pulmonary distribution of hepatic venous effluent. We studied the effect of total cavopulmonary connection geometry and the effect of increased cardiac output on distribution of inferior vena caval return to the lungs. METHODS Ten patients undergoing the Fontan procedure, 5 with extracardiac and 5 with intracardiac configurations of the total cavopulmonary connection, previously analyzed for power loss were processed for calculating the distribution of inferior vena caval return to the lungs (second-order accuracy). One idealized total cavopulmonary connection was similarly analyzed under parametric variation of inferior vena caval offset and cardiac output flow split. RESULTS Streaming of the inferior vena caval return in the idealized total cavopulmonary connection model was dependent on both inferior vena caval offset magnitude and cardiac output flow-split ratio. For patient-specific total cavopulmonary connections, preferential streaming of the inferior vena caval return was directly proportional to the cardiac output flow-split ratio in the intracardiac total cavopulmonary connections (P < .0001). Preferential streaming in extracardiac total cavopulmonary connections correlated to the inferior vena caval offset (P < .05) and did not correlate to cardiac output flow split. Enhanced mixing in intracardiac total cavopulmonary connections is speculated to explain the contrasting results. Exercising tends to reduce streaming toward the left pulmonary artery in intracardiac total cavopulmonary connections, whereas for extracardiac total cavopulmonary connections, exercising tends to equalize the streaming. CONCLUSIONS Extracardiac and intracardiac total cavopulmonary connections have inherently different streaming characteristics because of contrasting mixing characteristics caused by their geometric differences. Pulmonary artery diameters and inferior vena caval offsets might together determine hepatic flow streaming.


The Journal of Thoracic and Cardiovascular Surgery | 2013

Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections

Christopher M. Haggerty; Kirk R. Kanter; Maria Restrepo; Diane de Zelicourt; W. James Parks; Jarek Rossignac; Mark A. Fogel; Ajit P. Yoganathan

BACKGROUND Using a bifurcated Y-graft as the Fontan baffle is hypothesized to streamline and improve flow dynamics through the total cavopulmonary connection (TCPC). This study conducted numerical simulations to evaluate this hypothesis using postoperative data from 5 patients. METHODS Patients were imaged with cardiac magnetic resonance or computed tomography after receiving a bifurcated aorto-iliac Y-graft as their Fontan conduit. Numerical simulations were performed using in vivo flow rates, as well as 2 levels of simulated exercise. Two TCPC models were virtually created for each patient to serve as the basis for hemodynamic comparison. Comparative metrics included connection flow resistance and inferior vena caval flow distribution. RESULTS Results demonstrate good hemodynamic outcomes for the Y-graft options. The consistency of inferior vena caval flow distribution was improved over TCPC controls, whereas the connection resistances were generally no different from the TCPC values, except for 1 case in which there was a marked improvement under both resting and exercise conditions. Examination of the connection hemodynamics as they relate to surgical Y-graft implementation identified critical strategies and modifications that are needed to potentially realize the theoretical efficiency of such bifurcated connection designs. CONCLUSIONS Five consecutive patients received a Y-graft connection to complete their Fontan procedure with positive hemodynamic results. Refining the surgical technique for implementation should result in further energetic improvements that may help improve long-term outcomes.


The Journal of Thoracic and Cardiovascular Surgery | 2011

Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation

Diane de Zelicourt; Christopher M. Haggerty; Kartik S. Sundareswaran; Brian Whited; Jarek Rossignac; Kirk R. Kanter; J. William Gaynor; Thomas L. Spray; Fotis Sotiropoulos; Mark A. Fogel; Ajit P. Yoganathan

OBJECTIVE Pulmonary arteriovenous malformations caused by abnormal hepatic flow distribution can develop in patients with a single ventricle with an interrupted inferior vena cava. However, preoperatively determining the hepatic baffle design that optimizes hepatic flow distribution is far from trivial. The current study combines virtual surgery and numeric simulations to identify potential surgical strategies for patients with an interrupted inferior vena cava. METHODS Five patients with an interrupted inferior vena cava and severe pulmonary arteriovenous malformations were enrolled. Their in vivo anatomies were reconstructed from magnetic resonance imaging (n = 4) and computed tomography (n = 1), and alternate virtual surgery options (intracardiac/extracardiac, Y-grafts, hepato-to-azygous shunts, and azygous-to-hepatic shunts) were generated for each. Hepatic flow distribution was assessed for all options using a fully validated computational flow solver. RESULTS For patients with a single superior vena cava (n = 3), intracardiac/extracardiac connections proved dangerous, because even a small left or right offset led to a highly preferential hepatic flow distribution to the associated lung. The best results were obtained with either a Y-graft spanning the Kawashima to split the flow or hepato-to-azygous shunts to promote mixing. For patients with bilateral superior vena cavae (n = 2), results depended on the balance between the left and right superior inflows. When those were equal, connecting the hepatic baffle between the superior vena cavae performed well, but other options should be pursued otherwise. CONCLUSIONS This study demonstrates how virtual surgery environments can benefit the clinical community, especially for patients with a single ventricle with an interrupted inferior vena cava. Furthermore, the sensitivity of the optimal baffle design to the superior inflows underscores the need to characterize both preoperative anatomy and flows to identify the best option.

Collaboration


Dive into the Diane de Zelicourt's collaboration.

Top Co-Authors

Avatar

Ajit P. Yoganathan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark A. Fogel

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kartik S. Sundareswaran

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Haggerty

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jarek Rossignac

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge