Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Restrepo is active.

Publication


Featured researches published by Maria Restrepo.


Heart | 2015

Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC

Reza H. Khiabani; Kevin K. Whitehead; David Han; Maria Restrepo; Elaine Tang; James Bethel; Stephen M. Paridon; Mark A. Fogel; Ajit P. Yoganathan

Objective Elevated energy loss in the total cavopulmonary connection (TCPC) is hypothesised to have a detrimental effect on clinical outcomes in single-ventricle physiology, which may be magnified with exercise. This study investigates the relationship between TCPC haemodynamic energy dissipation and exercise performance in single-ventricle patients. Methods Thirty consecutive Fontan patients with TCPC and standard metabolic exercise testing were included. Specific anatomies and flow rates at rest and exercise were obtained from cardiac MR (CMR) and phase-encoded velocity mapping. Exercise CMR images were acquired immediately following supine lower limb exercise using a CMR-compatible cycle ergometer. Computational fluid dynamics simulations were performed to determine power loss of the TCPC anatomies using in vivo anatomies and measured flows. Results A significant negative linear correlation was observed between indexed power loss at exercise and (a) minute oxygen consumption (r=−0.60, p<0.0005) and (b) work (r=−0.62, p<0.0005) at anaerobic threshold. As cardiac output increased during exercise, indexed power loss increased in an exponential fashion (y=0.9671x3.0263, p<0.0001). Conclusions This is the first study to demonstrate the relationship between power loss and exercise performance with the TCPC being one of the few modifiable factors to allow for improved quality of life. These results suggest that aerobic exercise tolerance in Fontan patients may, in part, be a consequence of TCPC power loss.


The Journal of Thoracic and Cardiovascular Surgery | 2013

Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections

Christopher M. Haggerty; Kirk R. Kanter; Maria Restrepo; Diane de Zelicourt; W. James Parks; Jarek Rossignac; Mark A. Fogel; Ajit P. Yoganathan

BACKGROUND Using a bifurcated Y-graft as the Fontan baffle is hypothesized to streamline and improve flow dynamics through the total cavopulmonary connection (TCPC). This study conducted numerical simulations to evaluate this hypothesis using postoperative data from 5 patients. METHODS Patients were imaged with cardiac magnetic resonance or computed tomography after receiving a bifurcated aorto-iliac Y-graft as their Fontan conduit. Numerical simulations were performed using in vivo flow rates, as well as 2 levels of simulated exercise. Two TCPC models were virtually created for each patient to serve as the basis for hemodynamic comparison. Comparative metrics included connection flow resistance and inferior vena caval flow distribution. RESULTS Results demonstrate good hemodynamic outcomes for the Y-graft options. The consistency of inferior vena caval flow distribution was improved over TCPC controls, whereas the connection resistances were generally no different from the TCPC values, except for 1 case in which there was a marked improvement under both resting and exercise conditions. Examination of the connection hemodynamics as they relate to surgical Y-graft implementation identified critical strategies and modifications that are needed to potentially realize the theoretical efficiency of such bifurcated connection designs. CONCLUSIONS Five consecutive patients received a Y-graft connection to complete their Fontan procedure with positive hemodynamic results. Refining the surgical technique for implementation should result in further energetic improvements that may help improve long-term outcomes.


The Journal of Thoracic and Cardiovascular Surgery | 2012

Preliminary Clinical Experience with a Bifurcated Y-Graft Fontan Procedure—A Feasibility Study

Kirk R. Kanter; Christopher M. Haggerty; Maria Restrepo; Diane de Zelicourt; Jarek Rossignac; W. James Parks; Ajit P. Yoganathan

OBJECTIVE Optimizing flow and diminishing power loss in the Fontan circuit can improve hemodynamic efficiency, potentially improving the long-term outcomes. Computerized modeling has predicted improved energetics with a Y-graft Fontan. METHODS From August to December 2010, 6 consecutive children underwent completion Fontan (n=3) or Fontan revision (n=3) using a bifurcated polytetrafluoroethylene Y-graft (18×9×9 mm in 2, 20×10×10 mm in 4) connecting the inferior vena cava to the right and left pulmonary arteries with separate graft limbs. The patents underwent magnetic resonance imaging (n=5) or computed tomography (n=1). Computational fluid dynamics assessed Fontan hemodynamics, power loss, and inferior vena cava flow splits to the branch pulmonary arteries. The clinical parameters were compared with those from 12 patients immediately preceding the present series who had undergone a lateral Fontan procedure. RESULTS Despite longer crossclamp and bypass times (not statistically significant), the Y-graft Fontan patients had postoperative courses similar to those of the conventional Fontan patients. Other than 2 early readmissions for pleural effusions managed with diuretics, at 6 to 12 months of follow-up (mean, 8 months), all 6 patients had done well. Postoperative flow modeling demonstrated a balanced distribution of inferior vena cava flow to both pulmonary arteries with minimal flow disturbance. Improvements in hemodynamics and efficiency were noted when the Y-graft branches were anastomosed distally and aligned tangentially with the branch pulmonary arteries. CONCLUSIONS The present preliminary surgical experience has demonstrated the clinical feasibility of the bifurcated Y-graft Fontan. Computational fluid dynamics showed acceptable hemodynamics with low calculated power losses and a balanced distribution of inferior vena cava flow to the pulmonary arteries as long as the branch grafts were anastomosed distally.


The Journal of Thoracic and Cardiovascular Surgery | 2014

Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis.

Christopher M. Haggerty; Maria Restrepo; Elaine Tang; Diane de Zelicourt; Kartik S. Sundareswaran; Lucia Mirabella; James Bethel; Kevin K. Whitehead; Mark A. Fogel; Ajit P. Yoganathan

OBJECTIVES This study sought to quantify average hemodynamic metrics of the Fontan connection as reference for future investigations, compare connection types (intra-atrial vs extracardiac), and identify functional correlates using computational fluid dynamics in a large patient-specific cohort. Fontan hemodynamics, particularly power losses, are hypothesized to vary considerably among patients with a single ventricle and adversely affect systemic hemodynamics and ventricular function if suboptimal. METHODS Fontan connection models were created from cardiac magnetic resonance scans for 100 patients. Phase velocity cardiac magnetic resonance in the aorta, vena cavae, and pulmonary arteries was used to prescribe patient-specific time-averaged flow boundary conditions for computational fluid dynamics with a customized, validated solver. Comparison with 4-dimensional cardiac magnetic resonance velocity data from selected patients was used to provide additional verification of simulations. Indexed Fontan power loss, connection resistance, and hepatic flow distribution were quantified and correlated with systemic patient characteristics. RESULTS Indexed power loss varied by 2 orders of magnitude, whereas, on average, Fontan resistance was 15% to 20% of published values of pulmonary vascular resistance in single ventricles. A significant inverse relationship was observed between indexed power loss and both systemic venous flow and cardiac index. Comparison by connection type showed no differences between intra-atrial and extracardiac connections. Instead, the least efficient connections revealed adverse consequences from localized Fontan pathway stenosis. CONCLUSIONS Fontan power loss varies from patient to patient, and elevated levels are correlated with lower systemic flow and cardiac index. Fontan connection type does not influence hemodynamic efficiency, but an undersized or stenosed Fontan pathway or pulmonary arteries can be highly dissipative.


Jacc-cardiovascular Imaging | 2014

Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics.

Elaine Tang; Maria Restrepo; Christopher M. Haggerty; Lucia Mirabella; James Bethel; Kevin K. Whitehead; Mark A. Fogel; Ajit P. Yoganathan

Total cavopulmonary connection (TCPC) geometries have great variability. Geometric features, such as diameter, connection angle, and distance between vessels, are hypothesized to affect the energetics and flow dynamics within the connection. This study aimed to identify important geometric characteristics that can influence TCPC hemodynamics. Anatomies from 108 consecutive patients were reconstructed from cardiac magnetic resonance (CMR) images and analyzed for their geometric features. Vessel flow rates were computed from phase contrast CMR. Computational fluid dynamics simulations were carried out to quantify the indexed power loss and hepatic flow distribution. TCPC indexed power loss correlated inversely with minimum Fontan pathway (FP), left pulmonary artery, and right pulmonary artery diameters. Cardiac index correlated with minimum FP diameter and superior vena cava (SVC) minimum/maximum diameter ratio. Hepatic flow distribution correlated with caval offset, pulmonary flow distribution, and the angle between FP and SVC. These correlations can have important implications for future connection design and patient follow-up.


Journal of Biomechanics | 2012

Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection

Reza H. Khiabani; Maria Restrepo; Elaine Tang; Diane de Zelicourt; Fotis Sotiropoulos; Mark A. Fogel; Ajit P. Yoganathan

Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI<30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI<50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.


The Annals of Thoracic Surgery | 2015

Energetic Implications of Vessel Growth and Flow Changes Over Time in Fontan Patients

Maria Restrepo; Elaine Tang; Christopher M. Haggerty; Reza H. Khiabani; Lucia Mirabella; James Bethel; Anne Marie Valente; Kevin K. Whitehead; Doff B. McElhinney; Mark A. Fogel; Ajit P. Yoganathan

BACKGROUND As patients with a single-ventricle physiology age, long-term complications inherent to this population become more evident. Previous studies have focused on correlating anatomic and hemodynamic performance, but there is little information of how these variables change with time. Vessel growth and flow rate changes were quantified using cardiac magnetic resonance and their effects on hemodynamics were assessed, which could affect the long-term outcome. METHODS Forty-eight patients with a lateral tunnel or extracardiac conduit Fontan who underwent two cardiac magnetic resonance scans (average interval, 5.1 ± 2.3 years) were studied. Total cavopulmonary connection anatomic and flow variables were reconstructed and normalized to body surface area(1/2). Total cavopulmonary connection hemodynamic efficiency (indexed power loss) was obtained through computational fluid dynamic modeling. RESULTS Absolute vessel diameters increased with time, normalized diameters decreased, and vessel mean flow rates remained unchanged. Indexed power loss changed significantly in the cohort, as well as in patients in whom the minimum normalized left pulmonary artery decreased. Age at first scan and connection type (lateral tunnel or extracardiac conduit) were not associated with changes in indexed power loss. CONCLUSIONS We present the largest serial cardiac magnetic resonance Fontan cohort to date. Although flow rates increased proportionally to body surface area, vessel diameters did not match somatic growth. As a result, energy losses increased significantly with time in the cohort analyzed.


The Annals of Thoracic Surgery | 2014

Fontan Pathway Growth: A Quantitative Evaluation of Lateral Tunnel and Extracardiac Cavopulmonary Connections Using Serial Cardiac Magnetic Resonance

Maria Restrepo; Lucia Mirabella; Elaine Tang; Christopher M. Haggerty; Reza H. Khiabani; Francis Fynn-Thompson; Anne Marie Valente; Doff B. McElhinney; Mark A. Fogel; Ajit P. Yoganathan

BACKGROUND Typically, a Fontan connection is constructed as either a lateral tunnel (LT) pathway or an extracardiac (EC) conduit. The LT is formed partially by atrial wall and is assumed to have growth potential, but the extent and nature of LT pathway growth have not been well characterized. A quantitative analysis was performed to evaluate this issue. METHODS Retrospective serial cardiac magnetic resonance data were obtained for 16 LT and 9 EC patients at 2 time points (mean time between studies, 4.2 ± 1.6 years). Patient-specific anatomies and flows were reconstructed. Geometric parameters of Fontan pathway vessels and the descending aorta were quantified, normalized to body surface area (BSA), and compared between time points and Fontan pathway types. RESULTS Absolute LT pathway mean diameters increased over time for all but 2 patients; EC pathway size did not change (2.4 ± 2.2 mm vs 0.02 ± 2.1 mm, p < 0.05). Normalized LT and EC diameters decreased, while the size of the descending aorta increased proportionally to BSA. Growth of other cavopulmonary vessels varied. The patterns and extent of LT pathway growth were heterogeneous. Absolute flows for all vessels analyzed, except for the superior vena cava, proportionally to BSA. CONCLUSIONS Fontan pathway vessel diameter changes over time were not proportional to somatic growth but increases in pathway flows were; LT pathway diameter changes were highly variable. These factors may impact Fontan pathway resistance and hemodynamic efficiency. These findings provide further understanding of the different characteristics of LT and EC Fontan connections and set the stage for further investigation.


Annals of Biomedical Engineering | 2015

Surgical planning of the total cavopulmonary connection: robustness analysis.

Maria Restrepo; Mark Luffel; Jake Sebring; Kirk R. Kanter; Pedro J. del Nido; Alessandro Veneziani; Jarek Rossignac; Ajit P. Yoganathan

In surgical planning of the Fontan connection for single ventricle physiologies, there can be differences between the proposed and implemented options. Here, we developed a surgical planning framework that help determine the best performing option and ensures that the results will be comparable if there are slight geometrical variations. Eight patients with different underlying anatomies were evaluated in this study; surgical variations were created for each connection by changing either angle, offset or baffle diameter. Computational fluid dynamics were performed and the energy efficiency (indexed power loss-iPL) and hepatic flow distribution (HFD) computed. Differences with the original connection were evaluated: iPL was not considerably affected by the changes in geometry. For HFD, the single superior vena cava (SVC) connections presented less variability compared to the other anatomies. The Y-graft connection was the most robust overall, while the extra-cardiac connections showed dependency to offset. Bilateral SVC and interrupted inferior vena cava with azygous continuation showed high variability in HFD. We have developed a framework to assess the robustness of a surgical option for the TCPC; this will be useful to assess the most complex cases where pre-surgery planning could be most beneficial to ensure an efficient and robust hemodynamic performance.


Heart | 2017

Effect of Fontan geometry on exercise haemodynamics and its potential implications

Elaine Tang; Zhenglun (Alan) Wei; Kevin K. Whitehead; Reza H. Khiabani; Maria Restrepo; Lucia Mirabella; James Bethel; Stephen M. Paridon; Bradley S. Marino; Mark A. Fogel; Ajit P. Yoganathan

Objective Exercise intolerance afflicts Fontan patients with total cavopulmonary connections (TCPCs) causing a reduction in quality of life. Optimising TCPC design is hypothesised to have a beneficial effect on exercise capacity. This study investigates relationships between TCPC geometries and exercise haemodynamics and performance. Methods This study included 47 patients who completed metabolic exercise stress test with cardiac magnetic resonance (CMR). Phase-contrast CMR images were acquired immediately following supine lower limb exercise. Both anatomies and exercise vessel flow rates at ventilatory anaerobic threshold (VAT) were extracted. The vascular modelling toolkits were used to analyse TCPC geometries. Computational simulations were performed to quantify TCPC indexed power loss (iPL) at VAT. Results A highly significant inverse correlation was found between the TCPC diameter index, which factors in the narrowing of TCPC vessels, with iPL at VAT (r=−0.723, p<0.001) but positive correlations with exercise performance variables, including minute oxygen consumption (VO2) at VAT (r=0.373, p=0.01), VO2 at peak exercise (r=0.485, p=0.001) and work at VAT/weight (r=0.368, p=0.01). iPL at VAT was negatively correlated with VO2 at VAT (r=−0.337, p=0.02), VO2 at peak exercise (r=−0.394, p=0.007) and work at VAT/weight (r=−0.208, p=0.17). Conclusions Eliminating vessel narrowing in TCPCs and reducing elevated iPL at VAT could enhance exercise tolerance for patients with TCPCs. These findings could help plan surgical or catheter-based strategies to improve patients’ exercise capacity.

Collaboration


Dive into the Maria Restrepo's collaboration.

Top Co-Authors

Avatar

Ajit P. Yoganathan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark A. Fogel

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Elaine Tang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Haggerty

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin K. Whitehead

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Reza H. Khiabani

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lucia Mirabella

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Diane de Zelicourt

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge