Diane K. O'Dowd
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diane K. O'Dowd.
Journal of Neuroscience Research | 2003
Philip H. Schwartz; Peter J. Bryant; Tannin J. Fuja; Hailing Su; Diane K. O'Dowd; Henry Klassen
Post‐mortem human brain tissue represents a vast potential source of neural progenitor cells for use in basic research as well as therapeutic applications. Here we describe five human neural progenitor cell cultures derived from cortical tissue harvested from premature infants. Time‐lapse videomicrography of the passaged cultures revealed them to be highly dynamic, with high motility and extensive, evanescent intercellular contacts. Karyotyping revealed normal chromosomal complements. Prior to differentiation, most of the cells were nestin, Sox2, vimentin, and/or GFAP positive, and a subpopulation was doublecortin positive. Multilineage potential of these cells was demonstrated after differentiation, with some subpopulations of cells expressing the neuronal markers β‐tubulin, MAP2ab, NeuN, FMRP, and Tau and others expressing the oligodendroglial marker O1. Still other cells expressed the classic glial marker glial fibrillary acidic protein (GFAP). RT‐PCR confirmed nestin, SOX2, GFAP, and doublecortin expression and also showed epidermal growth factor receptor and nucleostemin expression during the expansion phase. Flow cytometry showed high levels of the neural stem cell markers CD133, CD44, CD81, CD184, CD90, and CD29. CD133 markedly decreased in high‐passage, lineage‐restricted cultures. Electrophysiological analysis after differentiation demonstrated that the majority of cells with neuronal morphology expressed voltage‐gated sodium and potassium currents. These data suggest that post‐mortem human brain tissue is an important source of neural progenitor cells that will be useful for analysis of neural differentiation and for transplantation studies.
The Journal of Neuroscience | 1995
Ariel Agmon; Lee T Yang; Edward G. Jones; Diane K. O'Dowd
Somatosensory thalamus and cortex in rodents contain topological representations of the facial whisker pad. The thalamic representation of a single whisker (“barreloid”) is presumed to project exclusively to the cortical representation (“barrel”) of the same whisker; however, it was not known when this correspondence is established during early development, nor how precise the thalamocortical projection is at birth, before formation of barrels and barreloids. To answer these questions, we retrogradely labeled thalamocortical projection neurons in fixed brain slices from 0–8 d old (P0-P8) mice, by placing paired deposits of two fluorescent dyes in adjacent barrels or (before barrel formation) in adjacent loci in upper cortical layers. At all ages studied, a negligible fraction of the retrogradely labeled cells was double labeled, implying that branches of single thalamocortical axons never extended within layer IV over an area wider than a single barrel. In P0 preparations, 70% of paired dye deposits placed 75–200 microns apart resulted in statistically significant segregation of labeled cell clusters in the thalamus. Quantitative analysis indicated that on P0 about 70% of thalamocortical axons were within 1.3 presumptive barrel diameters from their topologically precise target. In P4-P8 preparations, the great majority of thalamic cells retrogradely labeled from a single barrel were found in a single barreloid, implying a 1:1 projection of barreloids to barrels. The postnatal increase in topological precision was reproduced by a computer simulation, which assumed that many aberrant axons corrected their initial targeting error by extending terminal arborizations asymmetrically, towards the center of their appropriate barrel.
CBE- Life Sciences Education | 2010
Marin L. Moravec; Adrienne E. Williams; Nancy Aguilar-Roca; Diane K. O'Dowd
Actively engaging students in lecture has been shown to increase learning gains. To create time for active learning without displacing content we used two strategies for introducing material before class in a large introductory biology course. Four to five slides from 2007/8 were removed from each of three lectures in 2009 and the information introduced in preclass worksheets or narrated PowerPoint videos. In class, time created by shifting lecture material to learn before lecture (LBL) assignments was used to engage students in application of their new knowledge. Learning was evaluated by comparing student performance in 2009 versus 2007/8 on LBL-related question pairs, matched by level and format. The percentage of students who correctly answered five of six LBL-related exam questions was significantly higher (p < 0.001) in 2009 versus 2007/8. The mean increase in performance was 21% across the six LBL-related questions compared with <3% on all non-LBL exam questions. The worksheet and video LBL formats were equally effective based on a cross-over experimental design. These results demonstrate that LBLs combined with interactive exercises can be implemented incrementally and result in significant increases in learning gains in large introductory biology classes.
Science | 2011
Winston A. Anderson; Utpal Banerjee; Catherine L. Drennan; Sarah C. R. Elgin; Irving R. Epstein; Jo Handelsman; Graham F. Hatfull; Richard Losick; Diane K. O'Dowd; Baldomero M. Olivera; Scott A. Strobel; Graham C. Walker; Isiah M. Warner
Universities must better recognize, reward, and support the efforts of researchers who are also excellent and dedicated teachers. Professors have two primary charges: generate new knowledge and educate students. The reward systems at research universities heavily weight efforts of many professors toward research at the expense of teaching, particularly in disciplines supported extensively by extramural funding (1). Although education and lifelong learning skills are of utmost importance in our rapidly changing, technologically dependent world (2), teaching responsibilities in many STEM (science, technology, engineering, and math) disciplines have long had the derogatory label “teaching load” (3, 4). Some institutions even award professors “teaching release” as an acknowledgment of their research accomplishments and success at raising outside research funds.
The Journal of Neuroscience | 2006
Huaiyu Gu; Diane K. O'Dowd
Behavioral and genetic studies in Drosophila have contributed to our understanding of molecular mechanisms that underlie the complex processes of learning and memory. Use of this model organism for exploration of the cellular mechanisms of memory formation requires the ability to monitor synaptic activity in the underlying neural networks, a challenging task in the tiny adult fly. Here, we describe an isolated whole-brain preparation in which it is possible to obtain in situ whole-cell recordings from adult Kenyon cells, key members of a neural circuit essential for olfactory associative learning in Drosophila. The presence of sodium action potential (AP)-dependent synaptic potentials and synaptic currents in >50% of the Kenyon cells shows that these neurons are members of a spontaneously active neural circuit in the isolated brain. The majority of sodium AP-dependent synaptic transmission is blocked by curare and by α-bungarotoxin (α-BTX). This demonstrates that nicotinic acetylcholine receptors (nAChRs) are responsible for most of the spontaneous excitatory drive in this circuit in the absence of normal sensory input. Furthermore, analysis of sodium AP-independent synaptic currents provides the first direct demonstration that α-BTX-sensitive nAChRs mediate fast excitatory synaptic transmission in Kenyon cells in the adult Drosophila brain. This new preparation, in which whole-cell recordings and pharmacology can be combined with genetic approaches, will be critical in understanding the contribution of nAChR-mediated fast synaptic transmission to cellular plasticity in the neural circuits underlying olfactory associative learning.
Cell | 2006
Lutz G.W. Hilgenberg; Hailing Su; Huaiyu Gu; Diane K. O'Dowd; Martin A. Smith
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.
The Journal of Neuroscience | 2003
Hailing Su; Diane K. O'Dowd
The mushroom bodies, bilaterally symmetric regions in the insect brain, play a critical role in olfactory associative learning. Genetic studies in Drosophila suggest that plasticity underlying acquisition and storage of memory occurs at synapses on the dendrites of mushroom body Kenyon cells (Dubnau et al., 2001). Additional exploration of the mechanisms governing synaptic plasticity contributing to these aspects of olfactory associative learning requires identification of the receptors that mediate fast synaptic transmission in Kenyon cells. To this end, we developed a culture system that supports the formation of excitatory and inhibitory synaptic connections between neurons harvested from the central brain region of late-stage Drosophila pupae. Mushroom body Kenyon cells are identified as small-diameter, green fluorescent protein-positive (GFP+) neurons in cultures from OK107-GAL4;UAS-GFP pupae. In GFP+ Kenyon cells, fast EPSCs are mediated by α-bungarotoxin-sensitive nicotinic acetylcholine receptors (nAChRs). The miniature EPSCs have rapid rise and decay kinetics and a broad, positively skewed amplitude distribution. Fast IPSCs are mediated by picrotoxin-sensitive chloride conducting GABA receptors. The miniature IPSCs also have a rapid rate of rise and decay and a broad amplitude distribution. The vast majority of spontaneous synaptic currents in the cultured Kenyon cells are mediated byα-bungarotoxin-sensitive nAChRs or picrotoxin-sensitive GABA receptors. Therefore, these receptors are also likely to mediate synaptic transmission in Kenyon cells in vivo and to contribute to plasticity during olfactory associative learning.
Neuron | 1994
Martin A. Smith; Diane K. O'Dowd
Alternative splicing results in production of four agrin proteins (agrin0, agrin8, agrin11, and agrin19) with different AChR aggregating activities. However, the cellular origin of mRNAs encoding each agrin isoform remains unknown. Using single-cell PCR, we demonstrate that in the chick ciliary ganglion, nonneuronal cells express only mRNA encoding agrin0, whereas neurons express one or any combination of agrin mRNAs. Moreover, significant differences were observed between the agrin mRNA profiles of ciliary and choroid neurons in the ganglion. The abundance of each agrin mRNA, the fraction of neurons expressing each transcript, and the combinations of transcripts expressed by neurons also change during development. Our results demonstrate that transcripts encoding agrin proteins with high AChR aggregating activity are expressed exclusively by neurons in the ciliary ganglion and that alternative splicing of agrin mRNA is regulated during development and in a cell-specific manner.
The Journal of Neuroscience | 2008
Vasu Sheeba; Vijay K. Sharma; Huaiyu Gu; Yu-Ting Chou; Diane K. O'Dowd; Todd C. Holmes
Circadian pacemaker circuits consist of ensembles of neurons, each expressing molecular oscillations, but how circuit-wide coordination of multiple oscillators regulates rhythmic physiological and behavioral outputs remains an open question. To investigate the relationship between the pattern of oscillator phase throughout the circadian pacemaker circuit and locomotor activity rhythms in Drosophila, we perturbed the electrical activity and pigment dispersing factor (PDF) levels of the lateral ventral neurons (LNv) and assayed their combinatorial effect on molecular oscillations in different parts of the circuit and on locomotor activity behavior. Altered electrical activity of PDF-expressing LNv causes initial behavioral arrhythmicity followed by gradual long-term emergence of two concurrent short- and long-period circadian behavioral activity bouts in ∼60% of flies. Initial desynchrony of circuit-wide molecular oscillations is followed by the emergence of a novel pattern of period (PER) synchrony whereby two subgroups of dorsal neurons (DN1 and DN2) exhibit PER oscillation peaks coinciding with two activity bouts, whereas other neuronal subgroups exhibit a single PER peak coinciding with one of the two activity bouts. The emergence of this novel pattern of circuit-wide oscillator synchrony is not accompanied by concurrent change in the electrical activity of the LNv. In PDF-null flies, altered electrical activity of LNv drives a short-period circadian activity bout only, indicating that PDF-independent factors underlie the short-period circadian activity component and that the long-period circadian component is PDF-dependent. Thus, polyrhythmic behavioral patterns in electrically manipulated flies are regulated by circuit-wide coordination of molecular oscillations and electrical activity of LNv via PDF-dependent and -independent factors.
Journal of Neurobiology | 1999
Zhen Li; Lutz G.W. Hilgenberg; Diane K. O'Dowd; Martin A. Smith
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.