Lutz G.W. Hilgenberg
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lutz G.W. Hilgenberg.
Neuron | 2003
Kang Chen; Anna de Haas Ratzliff; Lutz G.W. Hilgenberg; Attila I. Gulyás; Tamás F. Freund; Martin A. Smith; T. P. Dinh; Daniele Piomelli; Ken Mackie; Ivan Soltesz
Febrile (fever-induced) seizures are the most common form of childhood seizures, affecting 3%-5% of infants and young children. Here we show that the activity-dependent, retrograde inhibition of GABA release by endogenous cannabinoids is persistently enhanced in the rat hippocampus following a single episode of experimental prolonged febrile seizures during early postnatal development. The potentiation of endocannabinoid signaling results from an increase in the number of presynaptic cannabinoid type 1 receptors associated with cholecystokinin-containing perisomatic inhibitory inputs, without an effect on the endocannabinoid-mediated inhibition of glutamate release. These results demonstrate a selective, long-term increase in the gain of endocannabinoid-mediated retrograde signaling at GABAergic synapses in a model of a human neurological disease.
The Journal of Neuroscience | 2007
Kang Chen; Axel Neu; Allyson Howard; Csaba Földy; Julio C. Echegoyen; Lutz G.W. Hilgenberg; Martin H Smith; Ken Mackie; Ivan Soltesz
Depolarization-induced suppression of inhibition (DSI) is an endocannabinoid-mediated short-term plasticity mechanism that couples postsynaptic Ca2+ rises to decreased presynaptic GABA release. Whether the gain of this retrograde synaptic mechanism is subject to long-term modulation by glutamatergic excitatory inputs is not known. Here, we demonstrate that activity-dependent long-term DSI potentiation takes place in hippocampal slices after tetanic stimulation of Schaffer collateral synapses. This activity-dependent, long-term plasticity of endocannabinoid signaling was specific to GABAergic synapses, as it occurred without increases in the depolarization-induced suppression of excitation. Induction of tetanus-induced DSI potentiation in vitro required a complex pathway involving AMPA/kainate and metabotropic glutamate receptor as well as CB1 receptor activation. Because DSI potentiation has been suggested to play a role in persistent limbic hyperexcitability after prolonged seizures in the developing brain, we used these mechanistic insights into activity-dependent DSI potentiation to test whether interference with the induction of DSI potentiation prevents seizure-induced long-term hyperexcitability. The results showed that the in vitro, tetanus-induced DSI potentiation was occluded by previous in vivo fever-induced (febrile) seizures, indicating a common pathway. Accordingly, application of CB1 receptor antagonists during febrile seizures in vivo blocked the seizure-induced persistent DSI potentiation, abolished the seizure-induced upregulation of CB1 receptors, and prevented the emergence of long-term limbic hyperexcitability. These results reveal a new form of activity-dependent, long-term plasticity of endocannabinoid signaling at perisomatic GABAergic synapses, and demonstrate that blocking the induction of this plasticity abolishes the long-term effects of prolonged febrile seizures in the developing brain.
Cell | 2006
Lutz G.W. Hilgenberg; Hailing Su; Huaiyu Gu; Diane K. O'Dowd; Martin A. Smith
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.
Cell Death & Differentiation | 2007
Zhiqun Tan; Xicui Sun; F-S Hou; H-W Oh; Lutz G.W. Hilgenberg; Elly M. Hol; F. W. van Leeuwen; Martin A. Smith; Diane K O'Dowd; S S Schreiber
A dinucleotide deletion in human ubiquitin (Ub) B messenger RNA leads to formation of polyubiquitin (UbB)+1, which has been implicated in neuronal cell death in Alzheimers and other neurodegenerative diseases. Previous studies demonstrate that UbB+1 protein causes proteasome dysfunction. However, the molecular mechanism of UbB+1-mediated neuronal degeneration remains unknown. We now report that UbB+1 causes neuritic beading, impairment of mitochondrial movements, mitochondrial stress and neuronal degeneration in primary neurons. Transfection of UbB+1 induced a buildup of mitochondria in neurites and dysregulation of mitochondrial motor proteins, in particular, through detachment of P74, the dynein intermediate chain, from mitochondria and decreased mitochondria–microtubule interactions. Altered distribution of mitochondria was associated with activation of both the mitochondrial stress and p53 cell death pathways. These results support the hypothesis that neuritic clogging of mitochondria by UbB+1 triggers a cascade of events characterized by local activation of mitochondrial stress followed by global cell death. Furthermore, UbB+1 small interfering RNA efficiently blocked expression of UbB+1 protein, attenuated neuritic beading and preserved cellular morphology, suggesting a potential neuroprotective strategy for certain neurodegenerative disorders.
Journal of Neurobiology | 1999
Zhen Li; Lutz G.W. Hilgenberg; Diane K. O'Dowd; Martin A. Smith
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.
Journal of Immunology | 2006
Johanna Kölln; Hui-Min Ren; Reng-Rong Da; Yiping Zhang; Edzard Spillner; Michael Olek; Neal Hermanowicz; Lutz G.W. Hilgenberg; Martin A. Smith; Stanley van den Noort; Yufen Qin
Our previous results revealed that Igs in lesions and single chain variable fragment Abs (scFv-Abs) generated from clonal B cells in the cerebrospinal fluid (CSF) from patients with multiple sclerosis (MS) bind to axons in MS brains. To study the axonal Ags involved in MS, we identified the glycolytic enzymes, triosephosphate isomerase (TPI) and GAPDH, using Igs from the CSF and scFv-Abs generated from clonal B cells in the CSF and in lesions from MS patients. Elevated levels of CSF-Abs to TPI were observed in patients with MS (46%), clinically isolated syndrome (CIS) suggestive of MS (40%), other inflammatory neurological diseases (OIND; 29%), and other noninflammatory neurological diseases (ONIND; 31%). Levels of GAPDH-reactive Abs were elevated in MS patients (60%), in patients with CIS (10%), OIND (14%), and ONIND (8%). The coexistence of both autoantibodies was detected in 10 MS patients (29%), and 1 CIS patient (3%), but not in patients with OIND/ONIND. Two scFv-Abs generated from the CSF and from lesions of a MS brain showed immunoreactivity to TPI and GAPDH, respectively. The findings suggest that TPI and GAPDH may be candidate Ags for an autoimmune response to neurons and axons in MS.
Journal of Clinical Immunology | 2005
Yiping Zhang; Reng-Rong Da; Wenzhong Guo; Hui-Min Ren; Lutz G.W. Hilgenberg; Raymond A. Sobel; Wallace W. Tourtellotte; Martin A. Smith; Michael Olek; Sudhir Gupta; Richard T. Robertson; Rashed M. Nagra; Stanley van den Noort; Yufen Qin
Demyelination and axonal loss have been described as the histological hallmarks of inflammatory lesions of multiple sclerosis (MS) and are the pathological correlates of persistent disability. However, the immune mechanisms underlying axonal damage in MS remain unknown. Here, we report the use of single chain-variable domain fragments (scFv) from clonally expanded cerebrospinal fluid (CSF) B cells to show the role of an anti-axon immune response in the central nervous system (CNS) in MS. The cellular and subcellular distribution of the antigen(s) recognized by these CSF-derived clonal scFv antibodies (CSFC-scFv Abs) was studied by immunochemical staining of brain tissues obtained at autopsy from patients with MS. Immunochemistry showed specific binding of CSFC-scFv Abs to axons in acute MS lesions. The stained axons showed three major types of axonal pathological changes: 1) linear axons, axonal ovoid formation, and axonal transection were seen in the myelinated white matter adjacent to the lesion; 2) accumulation of axonal ovoid formations and Wallerian degeneration were seen at the border between demyelinated lesions and the adjacent white matter; and 3) Wallerian degeneration occurred at the center and edge of acute demyelinated lesions. These findings suggest a B cell axonal specific immune response in the CNS in MS.
Journal of Visualized Experiments | 2007
Lutz G.W. Hilgenberg; Martin A. Smith
This video will guide you through the process for generating cortical neuronal cultures from late embryo and early postnatal mouse brain. These cultures can be used for a variety of applications including immunocytochemistry, biochemistry, electrophysiology, calcium and sodium imaging, protein and/or RNA isolation. These cultures also provide a platform to study the neuronal development of transgenic animals that carry a late embryonic or postnatal lethal gene mutation. The procedure is relatively straight forward, requires some experience in tissue culture technique and should not take longer than two to three hours if you are properly prepared. Careful separation of the cortical rind from the thalamo-cortical fiber tract will reduce the number of unwanted non-neuronal cells. To increase yields of neuronal cells triturate the pieces of the cortical tissue gently after the enzyme incubation step. This is imperative as it prevents unnecessary injury to cells and premature neuronal cell death. Since these cultures are maintained in the absence of glia feeder cells, they also offer an added advantage of growing cultures enriched in neurons.
Journal of Neuroimmunology | 2005
Yiping Zhang; Reng-Rong Da; Lutz G.W. Hilgenberg; Wallace W. Tourtellotte; Raymond A. Sobel; Martin A. Smith; Michael Olek; Rashed M. Nagra; Gupta Sudhir; Stanley van den Noort; Yufen Qin
Immunoglobulin A (IgA), the predominant immunoglobulin class in mucosal secretions, has been found in the cerebrospinal fluid of patients with multiple sclerosis (MS). In this study we examined the infiltration of clonally expanded IgA plasma cells in lesions of MS brains. Sequences of complementarity-determining region 3 of IgA variable heavy chain (V(H)) genes demonstrated the clonal expansion of IgA-bearing plasma cells in MS lesions. Somatic mutations and ongoing intra-clonal mutations occurred in their V(H) genes. Immunohistochemical study demonstrated infiltration of dimer and polymer IgA1- and A2-positive plasma cells in perivascular spaces, in the parenchyma of MS lesions, and in the adjacent white matter. Double immunofluorescence staining showed binding of IgA antibody on axons and walls of microvessels in the areas of chronic active and inactive demyelination. Bielshowskys silver impregnation revealed axonal damage in these areas. These findings suggest that IgA in the CNS are localized on axons in lesions and may contribute to axonal damage in MS.
Neuroreport | 2002
Martin A. Smith; Lutz G.W. Hilgenberg
The extracellular matrix molecule agrin mediates the motor neuron induced accumulation of acetylcholine receptors (AChR) at the neuromuscular junction. Agrin is also present in the CNS. However, while its spatiotemporal pattern of expression is consistent with a function in neuron–neuron synapse formation, it also suggests a role for agrin in other aspects of neural tissue morphogenesis. Here we review the data supporting these synaptic and non-synaptic functions of agrin in the CNS. The results of studies aimed at identifying a neuronal receptor for agrin (NRA) and its associated signal transduction pathways are examined. Possible roles for agrin in the etiology of diseases affecting the brain are also discussed.