Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diane S. Krause is active.

Publication


Featured researches published by Diane S. Krause.


Cytotherapy | 2006

Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement

Massimo Dominici; K. Le Blanc; Ingo Mueller; I Slaper-Cortenbach; Frank C. Marini; Diane S. Krause; Rj Deans; Armand Keating; Darwin J. Prockop; Edwin M. Horwitz

The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.


Cell | 2001

Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell

Diane S. Krause; Neil D. Theise; Michael I. Collector; Octavian Henegariu; Sonya Hwang; Rebekah Gardner; Sara Neutzel; Saul J. Sharkis

Purification of rare hematopoietic stem cell(s) (HSC) to homogeneity is required to study their self-renewal, differentiation, phenotype, and homing. Long-term repopulation (LTR) of irradiated hosts and serial transplantation to secondary hosts represent the gold standard for demonstrating self-renewal and differentiation, the defining properties of HSC. We show that rare cells that home to bone marrow can LTR primary and secondary recipients. During the homing, CD34 and SCA-1 expression increases uniquely on cells that home to marrow. These adult bone marrow cells have tremendous differentiative capacity as they can also differentiate into epithelial cells of the liver, lung, GI tract, and skin. This finding may contribute to clinical treatment of genetic disease or tissue repair.


Cytotherapy | 2005

Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement.

Edwin M. Horwitz; K. Le Blanc; Massimo Dominici; Ingo Mueller; I Slaper-Cortenbach; Frank C. Marini; Rj Deans; Diane S. Krause; Armand Keating

The plastic-adherent cells isolated from BM and other sources have come to be widely known as mesenchymal stem cells (MSC). However, the recognized biologic properties of the unfractionated population of cells do not seem to meet generally accepted criteria for stem cell activity, rendering the name scientifically inaccurate and potentially misleading to the lay public. Nonetheless, a bona fide MSC most certainly exists. To address this inconsistency between nomenclature and biologic properties, and to clarify the terminology, we suggest that the fibroblast-like plastic-adherent cells, regardless of the tissue from which they are isolated, be termed multipotent mesenchymal stromal cells, while the term mesenchymal stem cells is used only for cells that meet specified stem cell criteria. The widely recognized acronym, MSC, may be used for both cell populations, as is the current practice; thus, investigators must clearly define the more scientifically correct designation in their reports. The International Society for Cellular Therapy (ISCT) encourages the scientific community to adopt this uniform nomenclature in all written and oral communications.


Circulation | 2004

Stromal Cell–Derived Factor-1α Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial Infarction but Is Not Sufficient to Induce Homing in the Absence of Injury

J. Dawn Abbott; Yan Huang; Dingang Liu; Reed Hickey; Diane S. Krause; Frank J. Giordano

Background—After myocardial infarction (MI), bone marrow–derived cells (BMDCs) are found within the myocardium. The mechanisms determining BMDC recruitment to the heart remain unclear. We investigated the role of stromal cell–derived factor-1α (SDF-1) in this process. Methods and Results—MI produced in mice by coronary ligation induced SDF-1 mRNA and protein expression in the infarct and border zone and decreased serum SDF-1 levels. By quantitative polymerase chain reaction, 48 hours after intravenous infusion of donor-lineage BMDCs, there were 80.5±15.6% more BDMCs in infarcted hearts compared with sham-operated controls (P<0.01). Administration of AMD3100, which specifically blocks binding of SDF-1 to its endogenous receptor CXCR4, diminished BMDC recruitment after MI by 64.2±5.5% (P<0.05), strongly suggesting a requirement for SDF-1 in BMDC recruitment to the infarcted heart. Forced expression of SDF-1 in the heart by adenoviral gene delivery 48 hours after MI doubled BMDC recruitment over MI alone (P<0.001) but did not enhance recruitment in the absence of MI, suggesting that SDF-1 can augment, but is not singularly sufficient for, BDMC recruitment to the heart. Gene expression analysis after MI revealed increased levels of several genes in addition to SDF-1, including those for vascular endothelial growth factor, matrix metalloproteinase-9, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, which might act in concert with SDF-1 to recruit BMDCs to the injured heart. Conclusion—SDF-1/CXCR4 interactions play a crucial role in the recruitment of BMDCs to the heart after MI and can further increase homing in the presence, but not in the absence, of injury.


Journal of Clinical Investigation | 2003

Bone marrow stem cells contribute to repair of the ischemically injured renal tubule

Sujata Kale; Anil Karihaloo; Paul R. Clark; Michael Kashgarian; Diane S. Krause; Lloyd G. Cantley

The paradigm for recovery of the renal tubule from acute tubular necrosis is that surviving cells from the areas bordering the injury must migrate into the regions of tubular denudation and proliferate to re-establish the normal tubular epithelium. However, therapies aimed at stimulating these events have failed to alter the course of acute renal failure in human trials. In the present study, we demonstrate that Lin-Sca-1+ cells from the adult mouse bone marrow are mobilized into the circulation by transient renal ischemia and home specifically to injured regions of the renal tubule. There they differentiate into renal tubular epithelial cells and appear to constitute the majority of the cells present in the previously necrotic tubules. Loss of stem cells following bone marrow ablation results in a greater rise in blood urea nitrogen after renal ischemia, while stem cell infusion after bone marrow ablation reverses this effect. Thus, therapies aimed at enhancing the mobilization, propagation, and/or delivery of bone marrow stem cells to the kidney hold potential as entirely new approaches for the treatment of acute tubular necrosis.


Stem Cells | 2004

Plasticity of Bone Marrow–Derived Stem Cells

Joanna E. Grove; Emanuela M. Bruscia; Diane S. Krause

Stem cell plasticity refers to the ability of adult stem cells to acquire mature phenotypes that are different from their tissue of origin. Adult bone marrow cells (BMCs) include two populations of bone marrow stem cells (BMCs): hematopoietic stem cells (HSCs), which give rise to all mature lineages of blood, and mesenchymal stem cells (MSCs), which can differentiate into bone, cartilage, and fat. In this article, we review the literature that lends credibility to the theory that highly plastic BMCs have a role in maintenance and repair of nonhematopoietic tissue. We discuss the possible mechanisms by which this may occur. Also reviewed is the possibility that adult BMCs can change their gene expression profile after fusion with a mature cell, which has brought into question whether this stem cell plasticity is real.


Experimental Hematology | 2002

Radiation pneumonitis in mice: A severe injury model for pneumocyte engraftment from bone marrow

Neil D. Theise; Octavian Henegariu; Joanna E. Grove; Jayishree Jagirdar; Peter N. Kao; James M. Crawford; Sunil Badve; Romil Saxena; Diane S. Krause

OBJECTIVE To better understand the process by which pneumocytes can be derived from bone marrow cells, we investigated the in vivo kinetics of such engraftment following lethal irradiation. METHODS A cohort of lethally irradiated B6D2F1 female mice received whole bone marrow transplants (BMT) from age-matched male donors and were sacrificed at days 1, 3, 5, and 7 and months 2, 4, and 6 post-BMT (n = 3 for each time point). Additionally, 2 female mice who had received 200 male fluorescence-activated cell sorter (FACS)-sorted CD34(+)lin(-) cells were sacrificed 8 months post-BMT. RESULTS Lethal irradiation caused histologic evidence of pneumonitis including alveolar breakdown and hemorrhage beginning at day 3. To identify male-derived pneumocytes, simultaneous fluorescence in situ hybridization (FISH) for Y-chromosome and surfactant B messenger RNA was performed on lung tissue. Y(+) type II pneumocytes were engrafted as early as day 5 posttransplant, and eventually from 2 to 14% of the pneumocytes were donor derived in individual mice. Co-staining for epithelial-specific cytokeratins demonstrated that by 2 months, marrow-derived pneumocytes could comprise entire alveoli, suggesting that type I cells derived from type II pneumocytes. CONCLUSIONS We conclude that alveolar lining cells derive from bone marrow cells immediately after acute injury. Also, the CD34(+)lin(-) subpopulation is capable of such pulmonary engraftment.


Gene Therapy | 2002

Plasticity of marrow-derived stem cells.

Diane S. Krause

Many exciting discoveries reported over the past 3 years have caused us to expand the paradigm for understanding somatic stem cell plasticity. Within adult organs, there are not only specific stem cells that are capable of producing functional cells of one organ system, but also cells with the flexibility to differentiate into multiple other cell types. In the bone marrow, for example, in addition to hematopoietic stem cells and supportive stromal cells, there are cells with the potential to differentiate into mature cells of the heart, liver, kidney, lungs, GI tract, skin, bone, muscle, cartilage, fat, endothelium and brain. A subpopulation of cells in the brain can differentiate into all of the major cell types in the brain and also into hematopoietic and skeletal muscle cells. In this brief overview, several of these recent findings are summarized.


Experimental Hematology | 2003

Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice

Maria K. Angelopoulou; Enrico M. Novelli; Joanna E. Grove; Henry M. Rinder; Curt I. Civin; Linzhao Cheng; Diane S. Krause

OBJECTIVE For approximately 5% of autologous transplant recipients and a higher proportion of allogeneic transplant recipients, low level and delayed platelet engraftment is an ongoing problem. Mesenchymal stem cells (MSC), which can be derived from bone marrow as well as other organs, are capable of differentiation into multiple cell types and also support hematopoiesis in vitro. Because cotransplantation of marrow-derived stromal cells has been shown to enhance engraftment of human hematopoietic stem cells, we hypothesized that cotransplantation of MSC could enhance platelet and myeloid cell development. MATERIALS AND METHODS We tested this hypothesis by transplantation of CD34-selected mobilized human peripheral blood stem cells (PBSC) into sublethally irradiated NOD/SCID mice with or without culture-expanded human MSC and evaluated human myeloid, lymphoid, and megakaryocytic engraftment with flow cytometry and in vitro cultures. RESULTS We find that MSC cotransplantation enhances human cell engraftment when a limiting dose (<1 x 10(6)) of CD34 cells is administered. This enhancement is characterized by a shift in the differentiation of human cells from predominantly B lymphocytes to predominantly CD13(+), CD14(+), and CD33(+) myeloid cells with a corresponding increase in myeloid CFU in the marrow. Megakaryocytopoiesis is enhanced by MSC cotransplantation as assessed by an increase in both marrow CFU-MK and circulating human platelets. In contrast, MSC do not affect the percentage of human bone marrow cells that expresses CD34(+). CONCLUSIONS Cotransplantation of human mesenchymal stem cells with CD34(+)-selected hematopoietic stem cells enhances myelopoiesis and megakaryocytopoiesis.


American Journal of Pathology | 2004

Bone Marrow-Derived Cells Contribute to Epithelial Engraftment during Wound Healing

Xenia Borue; Sean Lee; Joanna E. Grove; Erica L. Herzog; R. M. Harris; Thomas Diflo; Earl J. Glusac; Kevin M Hyman; Neil D. Theise; Diane S. Krause

Recent findings suggest that bone marrow-derived cells (BMDC) may contribute to tissue maintenance throughout the body. However, it is not yet known whether marrow-derived epithelial cells are capable of undergoing proliferation. Our laboratory has shown that BMDC engraft as keratinocytes in the skin at low levels (</= 1%) in the absence of injury. Here we show that skin damage affects the degree of engraftment of BMDC as keratinocytes and that the keratinocytes are actively cycling. Female mice reconstituted with sex-mismatched BM were wounded by punch biopsy and incision. At the wound site, engraftment of BMDC as epidermal cells increased within 1 day, and continued to increase to approximately 4% by 3 weeks after injury. Using a Cre-lox system, fusion of BMDC with epithelial cells was ruled out. BMDC-derived epithelial cells at the wound edges expressed Ki67, a marker for actively cycling cells, and this proliferation correlated with an increase in the number of donor-derived cells within the wound. Donor-derived cytokeratin 5-expressing cells were rare, suggesting that BMDC do not engraft as epidermal stem cells, and the level of engraftment peaked and then decreased over time, further suggesting that BMDC may assist in early wound healing by engrafting as transit-amplifying cells, which then differentiate into keratinocytes.

Collaboration


Dive into the Diane S. Krause's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil D. Theise

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge