Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erica L. Herzog is active.

Publication


Featured researches published by Erica L. Herzog.


Science | 2010

Tissue-Engineered Lungs for in Vivo Implantation

Thomas H. Petersen; Elizabeth A. Calle; Liping Zhao; Eun Jung Lee; Liqiong Gui; MichaSam B. Raredon; Kseniya Gavrilov; Tai Yi; Zhen W. Zhuang; Christopher K. Breuer; Erica L. Herzog; Laura E. Niklason

Waiting to Exhale Lung tissue does not regenerate, so, when it is damaged by disease and/or surgically removed, lung transplantation is often the only treatment option. Because donor tissue is in short supply, there has been a long-standing interest in engineering functional and transplantable lung tissue in the laboratory. Petersen et al. (p. 538, published online 24 June; see the Perspective by Wagner and Griffith) now report an important step in this direction. After gently removing the cellular constituents of rat lungs with detergent, the residual scaffold of extracellular matrix—which retained the compliance and mechanical properties of the original lung—was re-seeded with a mixture of lung epithelial and endothelial cells and cultured in a bioreactor. Within a few days, the engineered lung tissue contained alveoli, microvessels, and small airways that were repopulated with the appropriate cell types. When transplanted into a rat for short time periods, the engineered lung showed evidence of gas exchange. Decellularized rat lungs rebuilt with new cells in vitro can function at a rudimentary level when implanted back into a rat. Because adult lung tissue has limited regeneration capacity, lung transplantation is the primary therapy for severely damaged lungs. To explore whether lung tissue can be regenerated in vitro, we treated lungs from adult rats using a procedure that removes cellular components but leaves behind a scaffold of extracellular matrix that retains the hierarchical branching structures of airways and vasculature. We then used a bioreactor to culture pulmonary epithelium and vascular endothelium on the acellular lung matrix. The seeded epithelium displayed remarkable hierarchical organization within the matrix, and the seeded endothelial cells efficiently repopulated the vascular compartment. In vitro, the mechanical characteristics of the engineered lungs were similar to those of native lung tissue, and when implanted into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs participated in gas exchange. Although representing only an initial step toward the ultimate goal of generating fully functional lungs in vitro, these results suggest that repopulation of lung matrix is a viable strategy for lung regeneration.


Nature Reviews Immunology | 2011

Fibrocytes: emerging effector cells in chronic inflammation

Ronald Reilkoff; Richard Bucala; Erica L. Herzog

Fibrocytes are mesenchymal cells that arise from monocyte precursors. They are present in injured organs and have both the inflammatory features of macrophages and the tissue remodelling properties of fibroblasts. Chronic inflammatory stimuli mediate the differentiation, trafficking and accumulation of these cells in fibrosing conditions associated with autoimmunity, cardiovascular disease and asthma. This Opinion article discusses the immunological mediators controlling fibrocyte differentiation and recruitment, describes the association of fibrocytes with chronic inflammatory diseases and compares the potential roles of fibrocytes in these disorders with those of macrophages and fibroblasts. It is hoped that this information prompts new opportunities for the study of these unique cells.


The International Journal of Biochemistry & Cell Biology | 2011

TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P.

Lynne Murray; Qingsheng Chen; Michael S. Kramer; David P. Hesson; Rochelle L. Argentieri; Xueyang Peng; Mridu Gulati; Robert J. Homer; Thomas Russell; Nico van Rooijen; Jack A. Elias; Cory M. Hogaboam; Erica L. Herzog

The pleiotropic growth factor TGFβ(1) promotes many of the pathogenic mechanisms observed in lung fibrosis and airway remodeling, such as aberrant extracellular matrix deposition due to both fibroblast activation and fibroblast to myofibroblast differentiation. Serum amyloid P (SAP), a member of the pentraxin family of proteins inhibits bleomycin-induced lung fibrosis through an inhibition of pulmonary fibrocyte and pro-fibrotic alternative (M2) macrophage accumulation. It is unknown if SAP has effects downstream of TGFβ(1), a major mediator of pulmonary fibrosis. Using the lung specific TGFβ(1) transgenic mouse model, we determined that SAP inhibits all of the pathologies driven by TGFβ(1) including apoptosis, airway inflammation, pulmonary fibrocyte accumulation and collagen deposition, without affecting levels of TGFβ(1). To explore the role of monocyte derived cells in this model we used liposomal clodronate to deplete pulmonary macrophages. This led to pronounced anti-fibrotic effects that were independent of fibrocyte accumulation. Administration of SAP mirrored these effects and reduced both pulmonary M2 macrophages and increased chemokine IP10/CXCL10 expression in a SMAD 3-independent manner. Interestingly, SAP concentrations were reduced in the circulation of IPF patients and correlated with disease severity. Last, SAP directly inhibited M2 macrophage differentiation of monocytes obtained from these patients. These data suggest that the beneficial anti-fibrotic effects of SAP in TGFβ(1)-induced lung disease are via modulating monocyte responses.


American Journal of Pathology | 2004

Bone Marrow-Derived Cells Contribute to Epithelial Engraftment during Wound Healing

Xenia Borue; Sean Lee; Joanna E. Grove; Erica L. Herzog; R. M. Harris; Thomas Diflo; Earl J. Glusac; Kevin M Hyman; Neil D. Theise; Diane S. Krause

Recent findings suggest that bone marrow-derived cells (BMDC) may contribute to tissue maintenance throughout the body. However, it is not yet known whether marrow-derived epithelial cells are capable of undergoing proliferation. Our laboratory has shown that BMDC engraft as keratinocytes in the skin at low levels (</= 1%) in the absence of injury. Here we show that skin damage affects the degree of engraftment of BMDC as keratinocytes and that the keratinocytes are actively cycling. Female mice reconstituted with sex-mismatched BM were wounded by punch biopsy and incision. At the wound site, engraftment of BMDC as epidermal cells increased within 1 day, and continued to increase to approximately 4% by 3 weeks after injury. Using a Cre-lox system, fusion of BMDC with epithelial cells was ruled out. BMDC-derived epithelial cells at the wound edges expressed Ki67, a marker for actively cycling cells, and this proliferation correlated with an increase in the number of donor-derived cells within the wound. Donor-derived cytokeratin 5-expressing cells were rare, suggesting that BMDC do not engraft as epidermal stem cells, and the level of engraftment peaked and then decreased over time, further suggesting that BMDC may assist in early wound healing by engrafting as transit-amplifying cells, which then differentiate into keratinocytes.


Experimental Hematology | 2010

Fibrocytes in health and disease

Erica L. Herzog; Richard Bucala

Fibrocytes are circulating mesenchymal progenitor cells that participate in tissue responses to injury and invasion. Accumulating knowledge from animal models regarding the differentiation, trafficking, and function of these cells implicates them in the development of diseases characterized by chronic inflammation and excessive collagen deposition. Recent data obtained from the clinical setting suggests that the enumeration of circulating fibrocytes may be a biomarker for disease progression in chronic lung diseases including asthma and pulmonary fibrosis. A greater understanding of the immunologic mediators that influence fibrocyte biology suggests new opportunities for therapeutic manipulation of these cells in fibrogenesis. This review integrates new developments in the cellular and molecular biology of fibrocytes with current concepts regarding the etiopathogenesis of fibrosing disorders.


Laboratory Investigation | 2010

Circulating Monocytes from Systemic Sclerosis Patients with Interstitial Lung Disease Show an Enhanced Profibrotic Phenotype

Susan K. Mathai; Mridu Gulati; Xueyan Peng; Thomas Russell; Albert C. Shaw; Ami N. Rubinowitz; Lynne Murray; Jonathan M. Siner; Danielle Antin-Ozerkis; Ruth R. Montgomery; Ronald Reilkoff; Richard Bucala; Erica L. Herzog

Profibrotic cells derived from circulating CD14+ monocytes include fibrocytes and alternatively activated macrophages. These cells are associated with interstitial lung disease (ILD) and are implicated in the pathogenesis of systemic sclerosis (SSc); however, the simultaneous presence of profibrotic cells and their associated mediators in the circulation of these patients has not been defined. We hypothesized that monocytes from patients with SSc-related ILD (SSc-ILD) would show profibrotic characteristics when compared with normal controls. We recruited patients with SSc-ILD (n=12) and normal controls (n=27) and quantified circulating collagen-producing cells by flow cytometry for CD45 and pro-collagen I. The in vitro activation potential of CD14+ monocytes in response to lipopolysaccharide was assessed using flow cytometry for CD163, and by ELISA for CCL18 and IL-10 secretion. Profibrotic mediators in plasma were quantified using Luminex-based assays. The concentration of circulating collagen-producing cells was increased in the SSc-ILD patients when compared with controls. These cells were composed of both CD34+ fibrocytes and a population of CD34+CD14+ cells. Cultured CD14+ monocytes from SSc-ILD patients revealed a profibrotic phenotype characterized by expression of CD163 and by enhanced secretion of CCL18 and IL-10 in response to proinflammatory activation. Plasma levels of IL-10, MCP-1, IL-1RA, and TNF levels were significantly elevated in the plasma of the SSc-ILD cohort. Subgroup analysis of the normal controls revealed that unlike the subjects ≤35 years, subjects ≥60 years old showed higher levels of circulating CD34+CD14+ cells, collagen-producing CD14+ monocytes, CD163+ monocytes, IL-4, IL-10, IL-13, MCP-1, and CCL18. These data indicate that the blood of patients with SSc-ILD and of healthy aged controls is enriched for fibrocytes, profibrotic monocytes, and fibrosis-associated mediators. Investigations defining the factors responsible for this peripheral blood profile may provide new insight into SSc-ILD as well as the pathophysiology of aging.


PLOS ONE | 2010

Serum Amyloid P Therapeutically Attenuates Murine Bleomycin-Induced Pulmonary Fibrosis via Its Effects on Macrophages

Lynne Murray; Rogério Silva Rosada; Ana Paula Moreira; Amrita Joshi; Michael S. Kramer; David P. Hesson; Rochelle L. Argentieri; Susan K. Mathai; Mridu Gulati; Erica L. Herzog; Cory M. Hogaboam

Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP), a member of the pentraxin family of proteins, signals through Fcγ receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2) macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses.


American Journal of Respiratory and Critical Care Medicine | 2014

Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report

Timothy S. Blackwell; Andrew M. Tager; Zea Borok; Bethany B. Moore; David A. Schwartz; Kevin J. Anstrom; Ziv Bar-Joseph; Peter B. Bitterman; Michael R. Blackburn; William Bradford; Kevin K. Brown; Harold A. Chapman; Harold R. Collard; Gregory P. Cosgrove; Robin R. Deterding; Ramona Doyle; Kevin R. Flaherty; Christine Kim Garcia; James S. Hagood; Craig A. Henke; Erica L. Herzog; Cory M. Hogaboam; Jeffrey C. Horowitz; Talmadge E. King; James E. Loyd; William Lawson; Clay B. Marsh; Paul W. Noble; Imre Noth; Dean Sheppard

The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.


Cell Reports | 2013

Chitinase 3-like 1 Regulates Cellular and Tissue Responses via IL-13 Receptor α2

Chuan Hua He; Chun Geun Lee; Charles S. Dela Cruz; Chang-Min Lee; Yang Zhou; Farida Ahangari; Bing Ma; Erica L. Herzog; Stephen A. Rosenberg; Yue Li; Adel M. Nour; Chirag R. Parikh; Insa Schmidt; Yorgo Modis; Lloyd G. Cantley; Jack A. Elias

SUMMARY Members of the 18 glycosyl hydrolase (GH 18) gene family have been conserved over species and time and are dysregulated in inflammatory, infectious, remodeling, and neoplastic disorders. This is particularly striking for the prototypic chitinase-like protein chitinase 3-like 1 (Chi3l1), which plays a critical role in antipathogen responses where it augments bacterial killing while stimulating disease tolerance by controlling cell death, inflammation, and remodeling. However, receptors that mediate the effects of GH 18 moieties have not been defined. Here, we demonstrate that Chi3l1 binds to interleukin-13 receptor α2 (IL-13Rα2) and that Chi3l1, IL-13Rα2, and IL-13 are in a multimeric complex. We also demonstrate that Chi3l1 activates macrophage mitogen-activated protein kinase, protein kinase B/AKT, and Wnt/β-catenin signaling and regulates oxidant injury, apoptosis, pyroptosis, inflammasome activation, antibacterial responses, melanoma metastasis, and TGF-β1 production via IL-13Rα2-dependent mechanisms. Thus, IL-13Rα2 is a GH 18 receptor that plays a critical role in Chi3l1 effector responses.


Proceedings of the American Thoracic Society | 2008

Knowns and Unknowns of the Alveolus

Erica L. Herzog; Arnold R. Brody; Thomas V. Colby; Robert J. Mason; Mary C. Williams

Our current alveolar paradigm includes three highly specialized cell populations. Alveolar type I cells are flat, elongated cells that presumably enable gas exchange. Alveolar type II cells are small, cuboidal cells with metabolic, secretory, progenitor, and immunologic functions. Alveolar fibroblasts secrete extracellular matrix proteins that support alveolar structure. These cells work together to facilitate respiration. Many years of high-quality research have defined our understanding of alveolar biology. However, there is much to be determined about the factors controlling cellular phenotypes and crosstalk. Moreover, specific questions remain regarding origin, repopulation, and previously unrecognized functions of each cell. This article summarizes the current data for each cell type and highlights areas that would benefit from further investigation.

Collaboration


Dive into the Erica L. Herzog's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge