Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dianna A. Johnson is active.

Publication


Featured researches published by Dianna A. Johnson.


Nature | 2006

Inactivation of the p53 pathway in retinoblastoma.

Nikia A. Laurie; Stacy L. Donovan; Chie Schin Shih; Jiakun Zhang; Nicholas Mills; Christine E. Fuller; Amina Teunisse; Suzanne Lam; Y.F. Ramos; Adithi Mohan; Dianna A. Johnson; Matthew W. Wilson; Carlos Rodriguez-Galindo; Micaela Quarto; Sarah Francoz; Susan M. Mendrysa; R. Kiplin Guy; Jean-Christophe Marine; Aart G. Jochemsen; Michael A. Dyer

Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells

Samantha A. Cicero; Dianna A. Johnson; Steve Reyntjens; Sharon Frase; Samuel Connell; Lionel M.L. Chow; Suzanne J. Baker; Brian P. Sorrentino; Michael A. Dyer

It was previously reported that the ciliary epithelium (CE) of the mammalian eye contains a rare population of cells that could produce clonogenic self-renewing pigmented spheres in culture. Based on their ability to up-regulate genes found in retinal neurons, it was concluded that these sphere-forming cells were retinal stem cells. This conclusion raised the possibility that CE-derived retinal stem cells could help to restore vision in the millions of people worldwide who suffer from blindness associated with retinal degeneration. We report here that human and mouse CE-derived spheres are made up of proliferating pigmented ciliary epithelial cells rather than retinal stem cells. All of the cells in the CE-derived spheres, including the proliferating cells, had molecular, cellular, and morphological features of differentiated pigmented CE cells. These differentiated cells ectopically expressed nestin when exposed to growth factors and low levels of pan-neuronal markers such as beta-III-tubulin. Although the cells aberrantly expressed neuronal markers, they retained their pigmented CE cell morphology and failed to differentiate into retinal neurons in vitro or in vivo. Our results provide an example of a differentiated cell type that can form clonogenic spheres in culture, self-renew, express progenitor cell markers, and initiate neuronal differentiation that is not a stem or progenitor cell. More importantly, our findings highlight the importance of shifting the focus away from studies on CE-derived spheres for cell-based therapies to restore vision in the degenerating retina and improving techniques for using ES cells or retinal precursor cells.


Cell | 2007

Differentiated Horizontal Interneurons Clonally Expand to Form Metastatic Retinoblastoma in Mice

Itsuki Ajioka; Rodrigo A.P. Martins; Ildar T. Bayazitov; Stacy L. Donovan; Dianna A. Johnson; Sharon Frase; Samantha A. Cicero; Kelli L. Boyd; Stanislav S. Zakharenko; Michael A. Dyer

During neurogenesis, the progression from a progenitor cell to a differentiated neuron is believed to be unidirectional and irreversible. The Rb family of proteins (Rb, p107, and p130) regulates cell-cycle exit and differentiation during retinogenesis. Rb and p130 are redundantly expressed in the neurons of the inner nuclear layer (INL) of the retina. We have found that in the adult Rb;p130-deficient retinae p107 compensation prevents ectopic proliferation of INL neurons. However, p107 is haploinsufficient in this process. Differentiated Rb(-/-);p107(+/-);p130(-/-) horizontal interneurons re-entered the cell cycle, clonally expanded, and formed metastatic retinoblastoma. Horizontal cells were not affected in Rb(+/-);p107(-/-);p130(-/-) or Rb(-/-);p107(-/-);p130(+/-), retinae suggesting that one copy of Rb or p130 was sufficient to prevent horizontal proliferation. We hereby report that differentiated neurons can proliferate and form cancer while maintaining their differentiated state including neurites and synaptic connections.


BMC Biology | 2006

Compensation by tumor suppressor genes during retinal development in mice and humans

Stacy L. Donovan; Brett Schweers; Rodrigo A.P. Martins; Dianna A. Johnson; Michael A. Dyer

BackgroundThe RB1 gene was the first tumor suppressor gene cloned from humans by studying genetic lesions in families with retinoblastoma. Children who inherit one defective copy of the RB1 gene have an increased susceptibility to retinoblastoma. Several years after the identification of the human RB1 gene, a targeted deletion of Rb was generated in mice. Mice with one defective copy of the Rb gene do not develop retinoblastoma. In this manuscript, we explore the different roles of the Rb family in human and mouse retinal development in order to better understand the species-specific difference in retinoblastoma susceptibility.ResultsWe found that the Rb family of proteins (Rb, p107 and p130) are expressed in a dynamic manner during mouse retinal development. The primary Rb family member expressed in proliferating embryonic retinal progenitor cells in mice is p107, which is required for appropriate cell cycle exit during retinogenesis. The primary Rb family member expressed in proliferating postnatal retinal progenitor cells is Rb. p130 protein is expressed redundantly with Rb in postmitotic cells of the inner nuclear layer and the ganglion cell layer of the mouse retina. When Rb is inactivated in an acute or chronic manner during mouse retinal development, p107 is upregulated in a compensatory manner. Similarly, when p107 is inactivated in the mouse retina, Rb is upregulated. No changes in p130 expression were seen when p107, Rb or both were inactivated in the developing mouse retina. In the human retina, RB1 was the primary family member expressed throughout development. There was very little if any p107 expressed in the developing human retina. In contrast to the developing mouse retina, when RB1 was acutely inactivated in the developing human fetal retina, p107 was not upregulated in a compensatory manner.ConclusionWe propose that intrinsic genetic compensation between Rb and p107 prevents retinoblastoma in Rb- or p107-deficient mice, but this compensation does not occur in humans. Together, these data suggest a model that explains why humans are susceptible to retinoblastoma following RB1 loss, but mice require both Rb and p107 gene inactivation.


Developmental Brain Research | 2003

Development of the outer retina in the mouse.

Rajesh K. Sharma; T. E. O'leary; Carolyn Fields; Dianna A. Johnson

Mice represent a valuable species for studies of development and disease. With the availability of transgenic models for retinal degeneration in this species, information regarding development and structure of mouse retina has become increasingly important. Of special interest is the differentiation and synaptogenesis of photoreceptors since these cells are predominantly involved in hereditary retinal degenerations. Thus, some of the keys to future clinical management of these retinal diseases may lie in understanding the molecular mechanisms of outer retinal development. In this study, we describe the expression of markers for photoreceptors (recoverin), horizontal cells (calbindin), bipolar cells (protein kinase C; PKC) and cytoskeletal elements pivotal to axonogenesis (beta-tubulin and actin) during perinatal development of mouse retina. Immunocytochemical localization of recoverin, calbindin, PKC and beta-tubulin was monitored in developing mouse retina (embryonic day (E) 18.5 to postnatal day (PN) 14), whereas f-actin was localized by Phalloidin binding. Recoverin immunoreactive cells, presumably the photoreceptors, were observed embryonically (E 18.5) and their number increased until PN 14. Neurite projections from the immunoreactive cells towards the outer plexiform layer (OPL) were noted at PN 0 and these processes reached the OPL at PN 7 coincident with histological evidence for the differentiation of the OPL. Outer segments, all the cell bodies in the ONL, as well as the OPL were immunoreactive to recoverin at PN 14. Calbindin immunoreactive horizontal cells were also present in E 18.5 retinas. These cells became progressively displaced proximally as the ONL developed. A calbindin immunoreactive plexus was seen in the OPL at PN 7. PKC immunoreactive bipolar cells developed postnatally, becoming distinguished at PN 7. Both beta-tubulin and actin immunoreactive cells were present in the IPL as early as E 18.5; however, appearance of processes labeled with these markers in the OPL was delayed until PN 7, concurrent with the first appearance of photoreceptor neurites, development of the horizontal cell plexus, and development of synaptophysin immunoreactivity at this location. These results provide a developmental timeframe for the expression of recoverin, calbindin, synaptophysin, beta-tubulin and actin. Our findings suggest that the time between PN 3 and PN 7 represents a critical period during which elements of the OPL are assembled.


Investigative Ophthalmology & Visual Science | 2012

Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association.

Sujoy Bhattacharya; Edward Chaum; Dianna A. Johnson; Leonard R. Johnson

PURPOSE Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). METHODS Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. RESULTS We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. CONCLUSIONS Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD.


Cell Stem Cell | 2015

Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors

Daniel Hiler; Xiang Chen; Jennifer L. Hazen; Sergey Kupriyanov; Patrick A. Carroll; Chunxu Qu; Beisi Xu; Dianna A. Johnson; Lyra Griffiths; Sharon Frase; Alberto R. Rodriguez; Greg Martin; Jiakun Zhang; Jongrye Jeon; Yiping Fan; David Finkelstein; Robert N. Eisenman; Kristin K. Baldwin; Michael A. Dyer

Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures.


Cancer Research | 2007

Neuronal Differentiation and Synaptogenesis in Retinoblastoma

Dianna A. Johnson; Jiakun Zhang; Sharon Frase; Matthew W. Wilson; Carlos Rodriguez-Galindo; Michael A. Dyer

Retinoblastomas initiate in the developing retina in utero and are diagnosed during the first few years of life. We have recently generated a series of knockout mouse models of retinoblastoma that recapitulate the timing, location, and progression of human retinoblastoma. One of the most important benefits of these preclinical models is that we can study the earliest stages of tumor initiation and expansion. This is not possible in human retinoblastoma because tumors initiate in utero and are not diagnosed until they are at an advanced stage. We found that mouse retinoblastoma cells exhibit a surprising degree of differentiation, which has not been previously reported for any neural tumor. Early-stage mouse retinoblastoma cells express proteins found normally in retinal plexiform layers. They also extend neurites and form synapses. All of these features, which were characterized by immunostaining, Golgi-Cox staining, scanning electron microscopy, and transmission electron microscopy, suggest that mouse retinoblastoma cells resemble amacrine/horizontal cells from the retina. As late-stage retinoblastoma cells expand and invade the surrounding tissue, they lose their differentiated morphology and become indistinguishable from human retinoblastomas. Taken together, our data suggest that neuronal differentiation is a hallmark of early-stage retinoblastoma and is lost as cells become more aggressive and invasive. We also show that rosette formation is not a hallmark of retinoblastoma differentiation, as previously believed. Instead, rosette formation reflects extensive cell-cell contacts between retinoblastoma cells in both early-stage (differentiated) and late-stage (dedifferentiated) tumors.


Molecular and Cellular Biology | 2009

Changes in retinoblastoma cell adhesion associated with optic nerve invasion

Nikia A. Laurie; Adithi Mohan; Justina McEvoy; Damon R. Reed; Jiakun Zhang; Brett Schweers; Itsuki Ajioka; Virginia Valentine; Dianna A. Johnson; David W. Ellison; Michael A. Dyer

ABSTRACT In the 1970s, several human retinoblastoma cell lines were developed from cultures of primary tumors. As the human retinoblastoma cell lines were established in culture, growth properties and changes in cell adhesion were described. Those changes correlated with the ability of the human retinoblastoma cell lines to invade the optic nerve and metastasize in orthotopic xenograft studies. However, the mechanisms that underlie these changes were not determined. We used the recently developed knockout mouse models of retinoblastoma to begin to characterize the molecular, cellular, and genetic changes associated with retinoblastoma tumor progression and optic nerve invasion. Here we report the isolation and characterization of the first mouse retinoblastoma cell lines with targeted deletions of the Rb family. Our detailed analysis of these cells as they were propagated in culture from the primary tumor shows that changes in cadherin-mediated cell adhesion are associated with retinoblastoma invasion of the optic nerve prior to metastasis. In addition, the same changes in cadherin-mediated cell adhesion correlate with the invasive properties of the human retinoblastoma cell lines isolated decades ago, providing a molecular mechanism for these earlier observations. Most importantly, our studies are in agreement with genetic studies on human retinoblastomas, suggesting that changes in this pathway are involved in tumor progression.


Investigative Ophthalmology & Visual Science | 2012

Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis.

Jena J. Steinle; Qiuhua Zhang; Karin E. Thompson; Jordan J. Toutounchian; C. Ryan Yates; Carl Soderland; Fan Wang; Clinton F. Stewart; Barrett G. Haik; J. Scott Williams; J. Scott Jackson; Timothy D. Mandrell; Dianna A. Johnson; Matthew W. Wilson

Purpose. Super-selective intra-ophthalmic artery chemotherapy (SSIOAC) is an eye-targeted drug-delivery strategy to treat retinoblastoma, the most prevalent primary ocular malignancy in children. Unfortunately, recent clinical reports associate adverse vascular toxicities with SSIOAC using melphalan, the most commonly used chemotherapeutic. Methods. To explore reasons for the unexpected vascular toxicities, we examined the effects of melphalan, as well as carboplatin (another chemotherapeutic used with retinoblastoma), in vitro using primary human retinal endothelial cells, and in vivo using a non-human primate model, which allowed us to monitor the retina in real time during SSIOAC. Results. Both melphalan and carboplatin triggered human retinal endothelial cell migration, proliferation, apoptosis, and increased expression of adhesion proteins intracellullar adhesion molecule-1 [ICAM-1] and soluble chemotactic factors (IL-8). Melphalan increased monocytic adhesion to human retinal endothelial cells. Consistent with these in vitro findings, histopathology showed vessel wall endothelial cell changes, leukostasis, and vessel occlusion. Conclusions. These results reflect a direct interaction of chemotherapeutic drugs with both the vascular endothelium and monocytes. The vascular toxicity may be related to the pH, the pulsatile delivery, or the chemotherapeutic drugs used. Our long-term goal is to determine if changes in the drug of choice and/or delivery procedures will decrease vascular toxicity and lead to better eye-targeted treatment strategies.

Collaboration


Dive into the Dianna A. Johnson's collaboration.

Top Co-Authors

Avatar

Michael A. Dyer

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiakun Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew W. Wilson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Stacy L. Donovan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Leonard R. Johnson

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Rajesh K. Sharma

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Beisi Xu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniel Hiler

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge