Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiakun Zhang is active.

Publication


Featured researches published by Jiakun Zhang.


Nature | 2006

Inactivation of the p53 pathway in retinoblastoma.

Nikia A. Laurie; Stacy L. Donovan; Chie Schin Shih; Jiakun Zhang; Nicholas Mills; Christine E. Fuller; Amina Teunisse; Suzanne Lam; Y.F. Ramos; Adithi Mohan; Dianna A. Johnson; Matthew W. Wilson; Carlos Rodriguez-Galindo; Micaela Quarto; Sarah Francoz; Susan M. Mendrysa; R. Kiplin Guy; Jean-Christophe Marine; Aart G. Jochemsen; Michael A. Dyer

Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.


Nature Genetics | 2004

Rb regulates proliferation and rod photoreceptor development in the mouse retina.

Jiakun Zhang; Jonathan Gray; Lizhao Wu; Gustavo Leone; Sheldon Rowan; Constance L. Cepko; Xuemei Zhu; Cheryl M. Craft; Michael A. Dyer

The retinoblastoma protein (Rb) regulates proliferation, cell fate specification and differentiation in the developing central nervous system (CNS), but the role of Rb in the developing mouse retina has not been studied, because Rb-deficient embryos die before the retinas are fully formed. We combined several genetic approaches to explore the role of Rb in the mouse retina. During postnatal development, Rb is expressed in proliferating retinal progenitor cells and differentiating rod photoreceptors. In the absence of Rb, progenitor cells continue to divide, and rods do not mature. To determine whether Rb functions in these processes in a cell-autonomous manner, we used a replication-incompetent retrovirus encoding Cre recombinase to inactivate the Rb1lox allele in individual retinal progenitor cells in vivo. Combined with data from studies of conditional inactivation of Rb1 using a combination of Cre transgenic mouse lines, these results show that Rb is required in a cell-autonomous manner for appropriate exit from the cell cycle of retinal progenitor cells and for rod development.


Cell Cycle | 2004

The First Knockout Mouse Model of Retinoblastoma

Jiakun Zhang; Brett Schweers; Michael A. Dyer

The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene identified in humans (Friend, et al., 1986) and the first tumor suppressor gene knocked out by targeted deletion in mice (Jacks, et al., Clarke, et al., Lee, et al., 1992). Children with a germline mutation in one of their RB1 alleles are likely to experience bilateral multifocal retinoblastoma; however, mice with a similar disruption of Rb1 do not develop retinoblastoma. The absence of a knock-out mouse model of retinoblastoma has slowed the progress toward developing new therapies and identifying secondary genetic lesions that occur after disruption of the Rb signaling pathway. Several advances have been made, over the past several years, in our understanding of the regulation of proliferation during retinal development (Zhang, et al., 2004; Dyer J, 2004; Dyer, Cepko, 2001) and we have built upon these earlier studies to generate the first nonchimeric knock-out mouse model of retinoblastoma. These mice are being used as a preclinical model to test new therapies for retinoblastoma and to elucidate the downstream genetic events that occur after inactivation of Rb1 or its related family members.


Clinical Cancer Research | 2005

Topotecan Combination Chemotherapy in Two New Rodent Models of Retinoblastoma

Nikia A. Laurie; Jonathan K. Gray; Jiakun Zhang; Mark Leggas; Mary V. Relling; Merrill J. Egorin; Clinton F. Stewart; Michael A. Dyer

Chemotherapy combined with laser therapy and cryotherapy has improved the ocular salvage rate for children with bilateral retinoblastoma. However, children with late-stage disease often experience recurrence shortly after treatment. To improve the vision salvage rate in advanced bilateral retinoblastoma, we have developed and characterized two new rodent models of retinoblastoma for screening chemotherapeutic drug combinations. The first model is an orthotopic xenograft model in which green fluorescent protein– or luciferase-labeled human retinoblastoma cells are injected into the eyes of newborn rats. The second model uses a replication-incompetent retrovirus (LIA-EE1A) encoding the E1A oncogene. Clonal, focal tumors arise from mouse retinal progenitor cells when LIA-EE1A is injected into the eyes of newborn p53−/− mice. Using these two models combined with pharmacokinetic studies and cell culture experiments, we have tested the efficacy of topotecan combined with carboplatin and of topotecan combined with vincristine for the treatment of retinoblastoma. The combination of topotecan and carboplatin most effectively halted retinoblastoma progression in our rodent models and was superior to the current triple drug therapy using vincristine, carboplatin, and etoposide. Vincristine had the lowest LC50 in culture but did not reduce tumor growth in our preclinical retinoblastoma models. Taken together, these data suggest that topotecan may be a suitable replacement for etoposide in combination chemotherapy for the treatment of retinoblastoma.


Cancer Research | 2011

Targeting the p53 Pathway in Retinoblastoma with Subconjunctival Nutlin-3a

Rachel Brennan; Sara M. Federico; Cori Bradley; Jiakun Zhang; Jacqueline Flores-Otero; Matthew W. Wilson; Clinton F. Stewart; Fangyi Zhu; Kip Guy; Michael A. Dyer

Retinoblastoma is a rare childhood cancer of the retina that begins in utero and is diagnosed in the first years of life. The goals of retinoblastoma treatment are ocular salvage, vision preservation, and reduction of short- and long-term side effects without risking mortality because of tumor dissemination. To identify better chemotherapeutic combinations for the treatment of retinoblastoma, several groups have developed genetic mouse models and orthotopic xenograft models of human retinoblastoma for preclinical testing. Previous studies have implicated the MDMX protein in the suppression of the p53 pathway in retinoblastoma and shown that the MDM2/MDMX antagonist, Nutlin-3a, can efficiently induce p53-mediated cell death in retinoblastoma cell lines. However, Nutlin-3a cannot be administered systemically to treat retinoblastoma, because it has poor penetration across the blood-ocular barrier. Therefore, we developed an ocular formulation of Nutlin-3a, Nutlin-3a(OC), and tested the pharmacokinetics and efficacy of this new formulation in genetic and human retinoblastoma orthotopic xenograft models of retinoblastoma. Here, we show that Nutlin-3a(OC) specifically and efficiently targets the p53 pathway and that the combination of Nutlin-3a(OC) with systemic topotecan is a significantly better treatment for retinoblastoma than currently used chemotherapy in human orthotopic xenografts. Our studies provide a new standardized approach to evaluate and prioritize novel agents for incorporation into future clinical trials for retinoblastoma.


PLOS ONE | 2011

Preclinical models for neuroblastoma: establishing a baseline for treatment.

Tal Teitz; Jennifer Stanke; Sara M. Federico; Cori Bradley; Rachel Brennan; Jiakun Zhang; Melissa Johnson; Jan Sedlacik; Madoka Inoue; Ziwei M. Zhang; Sharon Frase; Jerold E. Rehg; Claudia M. Hillenbrand; David Finkelstein; Christopher Calabrese; Michael A. Dyer; Jill M. Lahti

Background Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system. Principal Findings Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a “standard of care” chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents. Significance The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer.


Drug Metabolism and Disposition | 2011

Whole-Body Physiologically Based Pharmacokinetic Model for Nutlin-3a in Mice after Intravenous and Oral Administration

Fan Zhang; Michael Tagen; Stacy L. Throm; Jeremy P. Mallari; Laura Miller; R. Kiplin Guy; Michael A. Dyer; Richard T. Williams; Martine F. Roussel; Katie Nemeth; Fangyi Zhu; Jiakun Zhang; Min Lu; John C. Panetta; Nidal Boulos; Clinton F. Stewart

Nutlin-3a is an MDM2 inhibitor that is under investigation in preclinical models for a variety of pediatric malignancies, including retinoblastoma, rhabdomyosarcoma, neuroblastoma, and leukemia. We used physiologically based pharmacokinetic (PBPK) modeling to characterize the disposition of nutlin-3a in the mouse. Plasma protein binding and blood partitioning were assessed by in vitro studies. After intravenous (10 and 20 mg/kg) and oral (50, 100, and 200 mg/kg) dosing, tissue concentrations of nutlin-3a were determined in plasma, liver, spleen, intestine, muscle, lung, adipose, bone marrow, adrenal gland, brain, retina, and vitreous fluid. The PBPK model was simultaneously fit to all pharmacokinetic data using NONMEM. Nutlin-3a exhibited nonlinear binding to murine plasma proteins, with the unbound fraction ranging from 0.7 to 11.8%. Nutlin-3a disposition was characterized by rapid absorption with peak plasma concentrations at approximately 2 h and biphasic elimination consistent with a saturable clearance process. The final PBPK model successfully described the plasma and tissue disposition of nutlin-3a. Simulations suggested high bioavailability, rapid attainment of steady state, and little accumulation when administered once or twice daily at dosages up to 400 mg/kg. The final model was used to perform simulations of unbound tissue concentrations to determine which dosing regimens are appropriate for preclinical models of several pediatric malignancies.


Genes & Development | 2008

N-myc coordinates retinal growth with eye size during mouse development

Rodrigo A. P. Martins; Frederique Zindy; Stacy L. Donovan; Jiakun Zhang; Stanley Pounds; Alice Wey; Paul S. Knoepfler; Robert N. Eisenman; Martine F. Roussel; Michael A. Dyer

Myc family members play crucial roles in regulating cell proliferation, size, differentiation, and survival during development. We found that N-myc is expressed in retinal progenitor cells, where it regulates proliferation in a cell-autonomous manner. In addition, N-myc coordinates the growth of the retina and eye. Specifically, the retinas of N-myc-deficient mice are hypocellular but are precisely proportioned to the size of the eye. N-myc represses the expression of the cyclin-dependent kinase inhibitor p27Kip1 but acts independently of cyclin D1, the major D-type cyclin in the developing mouse retina. Acute inactivation of N-myc leads to increased expression of p27Kip1, and simultaneous inactivation of p27Kip1 and N-myc rescues the hypocellular phenotype in N-myc-deficient retinas. N-myc is not required for retinal cell fate specification, differentiation, or survival. These data represent the first example of a role for a Myc family member in retinal development and the first characterization of a mouse model in which the hypocellular retina is properly proportioned to the other ocular structures. We propose that N-myc lies upstream of the cell cycle machinery in the developing mouse retina and thus coordinates the growth of both the retina and eye through extrinsic cues.


Cell Stem Cell | 2015

Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors

Daniel Hiler; Xiang Chen; Jennifer L. Hazen; Sergey Kupriyanov; Patrick A. Carroll; Chunxu Qu; Beisi Xu; Dianna A. Johnson; Lyra Griffiths; Sharon Frase; Alberto R. Rodriguez; Greg Martin; Jiakun Zhang; Jongrye Jeon; Yiping Fan; David Finkelstein; Robert N. Eisenman; Kristin K. Baldwin; Michael A. Dyer

Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures.


Cancer | 2011

Subconjunctival carboplatin and systemic topotecan treatment in preclinical models of retinoblastoma

Katie Nemeth; Sara M. Federico; Angel M. Carcaboso; Ying Shen; Paula Schaiquevich; Jiakun Zhang; Merrill J. Egorin; Clinton F. Stewart; Michael A. Dyer

The authors demonstrated previously that the combination of topotecan (TPT) and carboplatin (CBP) was more effective than current chemotherapeutic combinations used to treat retinoblastoma in an orthotopic xenograft model. However, systemic coadministration of these agents is not ideal, because both agents cause dose‐limiting myelosuppression in children.

Collaboration


Dive into the Jiakun Zhang's collaboration.

Top Co-Authors

Avatar

Michael A. Dyer

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Dianna A. Johnson

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Sharon Frase

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Stacy L. Donovan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Cori Bradley

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Beisi Xu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Brett Schweers

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Clinton F. Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Fangyi Zhu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jonathan Gray

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge