Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dibyendu Kumar is active.

Publication


Featured researches published by Dibyendu Kumar.


Journal of Bacteriology | 2011

Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity

Neha Jalan; Valente Aritua; Dibyendu Kumar; Fahong Yu; Jeffrey B. Jones; James H. Graham; João C. Setubal; Nian Wang

Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.


Plant Physiology | 2012

Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize.

Jamila Bernardi; Alessandra Lanubile; Qin-Bao Li; Dibyendu Kumar; Aleš Kladnik; Sam David Cook; John Ross; Adriano Marocco; Prem S. Chourey

The phytohormone auxin (indole-3-acetic acid [IAA]) plays a fundamental role in vegetative and reproductive plant development. Here, we characterized a seed-specific viable maize (Zea mays) mutant, defective endosperm18 (de18) that is impaired in IAA biosynthesis. de18 endosperm showed large reductions of free IAA levels and is known to have approximately 40% less dry mass, compared with De18. Cellular analyses showed lower total cell number, smaller cell volume, and reduced level of endoreduplication in the mutant endosperm. Gene expression analyses of seed-specific tryptophan-dependent IAA pathway genes, maize Yucca1 (ZmYuc1), and two tryptophan-aminotransferase co-orthologs were performed to understand the molecular basis of the IAA deficiency in the mutant. Temporally, all three genes showed high expression coincident with high IAA levels; however, only ZmYuc1 correlated with the reduced IAA levels in the mutant throughout endosperm development. Furthermore, sequence analyses of ZmYuc1 complementary DNA and genomic clones revealed many changes specific to the mutant, including a 2-bp insertion that generated a premature stop codon and a truncated YUC1 protein of 212 amino acids, compared with the 400 amino acids in the De18. The putative, approximately 1.5-kb, Yuc1 promoter region also showed many rearrangements, including a 151-bp deletion in the mutant. Our concurrent high-density mapping and annotation studies of chromosome 10, contig 395, showed that the De18 locus was tightly linked to the gene ZmYuc1. Collectively, the data suggest that the molecular changes in the ZmYuc1 gene encoding the YUC1 protein are the causal basis of impairment in a critical step in IAA biosynthesis, essential for normal endosperm development in maize.


BMC Genomics | 2013

Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range

Neha Jalan; Dibyendu Kumar; Maxuel O. Andrade; Fahong Yu; Jeffrey B. Jones; James H. Graham; Frank F. White; João C. Setubal; Nian Wang

BackgroundCitrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime.ResultsTo characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306.ConclusionsComparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.


Molecular Plant | 2010

Sugar–Hormone Cross-Talk in Seed Development: Two Redundant Pathways of IAA Biosynthesis Are Regulated Differentially in the Invertase-Deficient miniature1 (mn1) Seed Mutant in Maize

Prem S. Chourey; Qin-Bao Li; Dibyendu Kumar

The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such a sugar-hormone relationship, we have initiated studies on IAA biosynthesis genes in developing seeds of maize. Two tryptophan-dependent pathways of IAA biosynthesis, tryptamine (TAM) and indole-3-pyruvic acid (IPA), are of particular interest. We report on molecular isolation and characterization of an endosperm-specific ZmTARelated1 (ZmTar1) gene of the IPA branch; we have also reported recently on ZmYuc1 gene in the TAM branch. Comparative gene expression analyses here have shown that (1) the ZmTar1 transcripts were approximately 10-fold higher levels than the ZmYuc1; (2) although both genes showed the highest level of expression at 8-12 d after pollination (DAP) coincident with an early peak in IAA levels, the two showed highly divergent (antagonistic) response at 12 and 16 DAP but similar patterns at 20 and 28 DAP in the Mn1 and mn1 endosperm. The Western blot analyses for the ZmTAR1 protein, however, displayed disconcordant protein/transcript expression patterns. Overall, these data report novel observations on redundant trp-dependent pathways of auxin biosynthesis in developing seeds of maize, and suggest that homeostatic control of IAA in this important sink is highly complex and may be regulated by both sucrose metabolism and developmental signals.


Journal of Bacteriology | 2011

The Xylella fastidiosa Biocontrol Strain EB92-1 Genome Is Very Similar and Syntenic to Pierce's Disease Strains

Shujian Zhang; Zomary Flores-Cruz; Dibyendu Kumar; Pranjib K. Chakrabarty; Donald L. Hopkins; Dean W. Gabriel

Xylella fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierces disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 is infectious to grapevines but does not cause symptoms. The draft genome of EB92-1 reveals that it may be missing 10 potential pathogenicity effectors.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads

Jiaqiang Dong; Yaping Feng; Dibyendu Kumar; Wei Zhang; Tingting Zhu; Ming-Cheng Luo; Joachim Messing

Significance Gene copy number variation plays an important role in genome evolution and the penetrance of phenotype variations within a species. We have applied new sequencing and physical mapping strategies to obtain long chromosomal regions from a single DNA preparation in each method that comprise tandem repeated gene copies interspersed with transposable elements that comprise about 85% of the genome. This approach should reduce the time and cost to study haplotype variation of complex genomes like those from mammalian and plant species. Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41–48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.


Genome Announcements | 2013

Complete Genome Sequence of Xanthomonas citri subsp. citri Strain Aw12879, a Restricted-Host-Range Citrus Canker-Causing Bacterium

Neha Jalan; Dibyendu Kumar; Fahong Yu; Jeffrey B. Jones; James H. Graham; Nian Wang

ABSTRACT Xanthomonas citri subsp. citri causes citrus canker. The Asiatic strain has a broad host range, whereas the Wellington variant has a restricted host range. Here, we present the complete genome of X. citri subsp. citri strain AW12879. This study lays the foundation to further characterize the mechanisms for virulence and host range of X. citri.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Cell-to-cell movement of mitochondria in plants

Csanad Gurdon; Zora Svab; Yaping Feng; Dibyendu Kumar; Pal Maliga

Significance We report cell-to-cell movement of mitochondria through a graft junction of two tobacco species, Nicotiana tabacum and Nicotiana sylvestris. The flowers of the N. tabacum line we used are male sterile due to a sterility-causing mitochondrial genome, whereas the N. sylvestris flowers are fertile. Grafting created an opportunity for organelle movement during the healing process when cell-to-cell connections at the graft junction were restored. We recognized N. sylvestris mitochondrial DNA transfer by restoration of fertile flower anatomy in plants regenerated from graft junctions. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of mitochondria by DNA acquired from other species. We report cell-to-cell movement of mitochondria through a graft junction. Mitochondrial movement was discovered in an experiment designed to select for chloroplast transfer from Nicotiana sylvestris into Nicotiana tabacum cells. The alloplasmic N. tabacum line we used carries Nicotiana undulata cytoplasmic genomes, and its flowers are male sterile due to the foreign mitochondrial genome. Thus, rare mitochondrial DNA transfer from N. sylvestris to N. tabacum could be recognized by restoration of fertile flower anatomy. Analyses of the mitochondrial genomes revealed extensive recombination, tentatively linking male sterility to orf293, a mitochondrial gene causing homeotic conversion of anthers into petals. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of the mitochondrial genome by DNA transmitted from a sexually incompatible species. Conversion of anthers into petals is a visual marker that can be useful for mitochondrial transformation.


Genome Announcements | 2013

Complete Genome Sequence of Mycoplasma hyorhinis Strain SK76

Steve Goodison; Virginia Urquidi; Dibyendu Kumar; Leticia Reyes; Charles J. Rosser

ABSTRACT Mycoplasma hyorhinis is a eubacterium belonging to the Mollicutes class and is responsible for porcine respiratory and arthritic diseases. It is also the major contaminant of mammalian tissue cultures in laboratories worldwide. Here, we report the complete genome sequence of M. hyorhinis strain SK76.


Genome Announcements | 2015

Genome Sequence of Porphyromonas gingivalis Strain AJW4.

Gary Xie; Ryan P. Chastain-Gross; Myriam Bélanger; Dibyendu Kumar; Joan Whitlock; Li Liu; William G. Farmerie; Hajnalka E. Daligault; Cliff Han; Thomas Brettin; Ann Progulske-Fox

ABSTRACT Porphyromonas gingivalis is associated with oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes have been correlated with disease presentation in infected laboratory animals. Here, we present the genome sequence of AJW4, a minimally invasive strain, with a single contig of 2,372,492 bp and a G+C content of 48.27%.

Collaboration


Dive into the Dibyendu Kumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Marocco

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Alessandra Lanubile

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Jamila Bernardi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fahong Yu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge