Didier G. Schaefer
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Didier G. Schaefer.
Science | 2007
Benoît Menand; Keke Yi; Stefan Jouannic; Laurent Hoffmann; Eoin Ryan; Paul Linstead; Didier G. Schaefer; Liam Dolan
Root hairs and rhizoids are cells with rooting functions in land plants. We describe two basic helix-loop-helix transcription factors that control root hair development in the sporophyte (2n) of the angiosperm Arabidopsis thaliana and rhizoid development in the gametophytes (n) of the bryophyte Physcomitrella patens. The phylogeny of land plants supports the hypothesis that early land plants were bryophyte-like and possessed a dominant gametophyte and later the sporophyte rose to dominance. If this hypothesis is correct, our data suggest that the increase in morphological complexity of the sporophyte body in the Paleozoic resulted at least in part from the recruitment of regulatory genes from gametophyte to sporophyte.
Molecular Genetics and Genomics | 1991
Didier G. Schaefer; Jean-Pierre Zryd; C.D. Knight; David J. Cove
SummaryWe report the stable transformation of Physcomitrella patens to either G418 or hygromycin B resistance following polyethylene glycol-mediated direct DNA uptake by protoplasts. The method described in this paper was used successfully in independent experiments carried out in our two laboratories. Transformation was assessed by the following criteria: selection of antibiotic-resistant plants, mitotic and meiotic stability of phenotypes after removal of selective pressure and stable transmission of the character to the offspring; Southern hybridisation analysis of genomic DNA to show integration of the plasmid DNA; segregation of the resistance gene following crosses with antibiotic-sensitive strains; and finally Southern hybridisation analysis of both resistant and sensitive progeny. In addition to stable transformants, a heterogeneous class of unstable transformants was obtained.
Development | 2011
Hélène Proust; Beate Hoffmann; Xiaonan Xie; Kaori Yoneyama; Didier G. Schaefer; Koichi Yoneyama; Fabien Nogué; Catherine Rameau
Strigolactones are a novel class of plant hormones controlling shoot branching in seed plants. They also signal host root proximity during symbiotic and parasitic interactions. To gain a better understanding of the origin of strigolactone functions, we characterised a moss mutant strongly affected in strigolactone biosynthesis following deletion of the CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) gene. Here, we show that wild-type Physcomitrella patens produces and releases strigolactones into the medium where they control branching of protonemal filaments and colony extension. We further show that Ppccd8 mutant colonies fail to sense the proximity of neighbouring colonies, which in wild-type plants causes the arrest of colony extension. The mutant phenotype is rescued when grown in the proximity of wild-type colonies, by exogenous supply of synthetic strigolactones or by ectopic expression of seed plant CCD8. Thus, our data demonstrate for the first time that Bryophytes (P. patens) produce strigolactones that act as signalling factors controlling developmental and potentially ecophysiological processes. We propose that in P. patens, strigolactones are reminiscent of quorum-sensing molecules used by bacteria to communicate with one another.
Nucleic Acids Research | 2006
Didier G. Schaefer; Florence Charlot; Fabien Nogué
MSH2 is a central component of the mismatch repair pathway that targets mismatches arising during DNA replication, homologous recombination (HR) and in response to genotoxic stresses. Here, we describe the function of MSH2 in the moss Physcomitrella patens, as deciphered by the analysis of loss of function mutants. Ppmsh2 mutants display pleiotropic growth and developmental defects, which reflect genomic instability. Based on loss of function of the APT gene, we estimated this mutator phenotype to be at least 130 times higher in the mutants than in wild type. We also found that MSH2 is involved in some but not all the moss responses to genotoxic stresses we tested. Indeed, the Ppmsh2 mutants were more tolerant to cisplatin and show higher sensitivity to UV-B radiations. PpMSH2 gene involvement in HR was studied by assessing gene targeting (GT) efficiency with homologous and homeologous sequences. GT efficiency with homologous sequences was slightly decreased in the Ppmsh2 mutant compared with wild type. Strikingly GT efficiency with homeologous sequences decreased proportionally to sequence divergence in the wild type whereas it remained unaffected in the mutants. Those results demonstrate the role of PpMSH2 in the maintenance of genome integrity and in homologous and homeologous recombination.
Plant Molecular Biology | 2002
Ori Schipper; Didier G. Schaefer; Ralf Reski; Andrew J. Fleming
Expansins are cell wall proteins which play a key function in basic processes of plant growth and differentiation. It has been proposed that expansins are likely to be present in all land plants and, to date, they have been reported in angiosperms, gymnosperms and pteridophytes. In this paper, we provide the first report and analysis of genes encoding expansin-like proteins in the bryophyte, Physcomitrella patens. Our analysis indicates that both α- and β-expansins are present as gene families in this plant and expression analysis indicates that these genes are subject to a complex regulation by both hormonal and environmental factors. In particular, the expression of many expansin genes in P. patens is upregulated by stress conditions, suggesting that they play a role in the specific cellular differentiation displayed by P. patens in response to such stress. Finally, we provide the first report on the generation and analysis of a series of knockout mutants for individual expansin genes. Abbreviations: IAA, indole-acetic acid; BAP, 6-benzylaminopurine; ABA, abscisic acid; npt, neomycin phospotransferase; KO, knockout
Molecular Genetics and Genomics | 1999
A. H. Hofmann; Antonio C. Codón; C. Ivascu; Vincenzo E. A. Russo; C.D. Knight; David J. Cove; Didier G. Schaefer; M. Chakhparonian; Jean-Pierre Zryd
Abstract The analysis of phenotypic change resulting from gene disruption following homologous recombination provides a powerful technique for the study of gene function. This technique has so far been difficult to apply to plants because the frequency of gene disruption following transformation with constructs containing DNA homologous to genomic sequences is low (0.01 to 0.1%). It has recently been shown that high rates of gene disruption (up to 90%) can be achieved in the moss Physcomitrella patens using genomic sequences of unknown function. We have used this system to examine the specificity of gene disruption in Physcomitrella using a member of the Cab multigene family. We have employed the previously characterised Cab gene ZLAB1 and have isolated segments of 13 other closely related members of the Cab gene family. In the 199-bp stretch sequenced, the 13 new members of the Cab family show an average of 8.5% divergence from the DNA sequence of ZLAB1. We observed 304 silent substitutions and 16 substitutions that lead to a change in the amino acid sequence of the protein. We cloned 1029 bp of the coding region of ZLAB1 (including 177 of the 199 bp with high homology to the 13 new Cab genes) into a vector containing a selectable hygromycin resistance marker, and used this construct to transform P. patens. In three of nine stable transformants tested, the construct had inserted in, and disrupted, the ZLAB1 gene. There was no discernible phenotype associated with the disruption. We have therefore shown that gene disruption is reproducible in P. patens and that the requirement for sequence homology appears to be stringent, therefore allowing the role of individual members of a gene family to be analysed in land plants for the first time.
Development | 2010
Lara Spinner; Martine Pastuglia; Katia Belcram; Mathieu Pegoraro; Magali Goussot; David Bouchez; Didier G. Schaefer
The preprophase band (PPB) is a transient ring of microtubules that forms before mitosis in land plants, and delineates the cytokinetic division plane established at telophase. It is one of the few derived traits specific to embryophytes, in which it is involved in the spatial control of cell division. Here we show that loss of function of Physcomitrella patens PpTON1 strongly affects development of the moss gametophore, phenocopying the developmental syndrome observed in Arabidopsis ton1 mutants: mutant leafy shoots display random orientation of cell division and severe defects in cell elongation, which are correlated with absence of PPB formation and disorganization of the cortical microtubule array in interphase cells. In hypomorphic Ppton1 alleles, PPB are still formed, whereas elongation defects are observed, showing the dual function of TON1 in organizing cortical arrays of microtubules during both interphase and premitosis. Ppton1 mutation has no impact on development of the protonema, which is consistent with the documented absence of PPB formation at this stage, apart from alteration of the gravitropic response, uncovering a new function of TON1 proteins in plants. Successful reciprocal cross-complementation between Physcomitrella and Arabidopsis shows conservation of TON1 function during land plant evolution. These results establish the essential role of the PPB in division plane specification in a basal land plant lineage, and provide new information on the function of TON1. They point to an ancient mechanism of cytoskeletal control of division plane positioning and cell elongation in land plants.
DNA Repair | 2010
Didier G. Schaefer; F. Delacote; Florence Charlot; Nathalie Vrielynck; A. Guyon-Debast; S. Le Guin; Jean-Marc Neuhaus; Marie-Pascale Doutriaux; Fabien Nogué
Gene targeting (GT) is a major tool for basic and applied research during which the transforming DNA, which shares sequence homology with a chromosomal target, integrates at the corresponding locus by homologous recombination (HR). In eukaryotes, GT recruits enzymes from the HR-mediated double strand break repair pathway. Different mechanisms of HR have been described which depend on the Rad52 epistasis group of genes, but which specific mechanism is used by the cell for GT remains unclear. In Saccharomyces cerevisiae, the RAD52 protein is essential for GT, and the RAD51 protein plays a minor role. In filamentous fungi and animal cells, however, GT depends on RAD51 and is weakly affected by suppression of RAD52. Genetic evidence also indicates that the non-homologous end-joining pathway of DSB repair has a negative impact on GT efficiencies, but how the balance between these two pathways is controlled is poorly understood. Here, we have examined the role of RAD51 in the only plant that exhibits high GT frequencies, the model bryophyte Physcomitrella patens. Our results show that the two RAD51 proteins have partially redundant functions in the maintenance of genome integrity and resistance to ionizing radiation. Furthermore, we demonstrate that loss of function of the two RAD51 proteins completely abolishes GT and strongly increases illegitimate integration rates in this moss. These findings demonstrate for the first time in plant the critical role of RAD51 in controlling the balance between targeted and random integration events observed upon transgenesis, and confirm that P. patens is a particularly interesting tool for studying GT in higher eukaryotes.
Nucleic Acids Research | 2012
Yasuko Kamisugi; Didier G. Schaefer; Jaroslav Kozak; Florence Charlot; Nathalie Vrielynck; Marcela Holá; Karel J. Angelis; Andrew C. Cuming; Fabien Nogué
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.
Biotechnology Letters | 2007
Florence Charlot; Sandrine Choinard; Didier G. Schaefer; Fabien Nogué
The moss, Physcomitrella patens, is a novel tool in plant functional genomics due to its exceptionally high gene targeting efficiency that is so far unique for plants. To determine if this high gene targeting efficiency is exclusive to P. patens or if it is a common feature to mosses, we estimated gene-targeting efficiency in another moss, Ceratodon purpureus. We transformed both mosses with replacement vectors corresponding to the adenine phosphoribosyl transferase (APT) reporter gene. We achieved a gene targeting efficiency of 20.8% for P. patens and 1.05% for C. purpureus. Our findings support the hypothesis that efficient gene targeting could be a general mechanism of Bryophyte transformation.