Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Didier Le Thiec is active.

Publication


Featured researches published by Didier Le Thiec.


Plant Physiology | 2006

Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica , a Poplar Growing in Arid Regions

Marie-Béatrice Bogeat-Triboulot; Mikael Brosché; Jenny Renaut; Laurent Jouve; Didier Le Thiec; Payam Fayyaz; Basia Vinocur; Erwin Witters; Kris Laukens; Thomas Teichmann; Arie Altman; Jean-François Hausman; Andrea Polle; Jaakko Kangasjärvi; Erwin Dreyer

The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.


BMC Genomics | 2010

Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

David H. Cohen; Marie-Béatrice Bogeat-Triboulot; Emilie Tisserant; Sandrine Balzergue; Marie-Laure Martin-Magniette; Gaëlle Lelandais; Nathalie Ningre; Jean-Pierre Renou; Jean-Philippe Tamby; Didier Le Thiec; Irène Hummel

BackgroundComparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species.ResultsUsing a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.ConclusionsIn poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.


Plant Physiology | 2007

Transcript Profiling of Poplar Leaves upon Infection with Compatible and Incompatible Strains of the Foliar Rust Melampsora larici-populina

Cécile Rinaldi; Annegret Kohler; Pascal Frey; Frédéric Duchaussoy; Nathalie Ningre; Arnaud Couloux; Patrick Wincker; Didier Le Thiec; Silvia Fluch; Francis L. Martin; Sébastien Duplessis

To understand key processes governing defense mechanisms in poplar (Populus spp.) upon infection with the rust fungus Melampsora larici-populina, we used combined histological and molecular techniques to describe the infection of Populus trichocarpa × Populus deltoides ‘Beaupré’ leaves by compatible and incompatible fungal strains. Striking differences in host-tissue infection were observed after 48-h postinoculation (hpi) between compatible and incompatible interactions. No reactive oxygen species production could be detected at infection sites, while a strong accumulation of monolignols occurred in the incompatible interaction after 48 hpi, indicating a late plant response once the fungus already penetrated host cells to form haustorial infection structures. P. trichocarpa whole-genome expression oligoarrays and sequencing of cDNAs were used to determine changes in gene expression in both interactions at 48 hpi. Temporal expression profiling of infection-regulated transcripts was further compared by cDNA arrays and reverse transcription-quantitative polymerase chain reaction. Among 1,730 significantly differentially expressed transcripts in the incompatible interaction, 150 showed an increase in concentration ≥3-fold, whereas 62 were decreased by ≥3-fold. Regulated transcripts corresponded to known genes targeted by R genes in plant pathosystems, such as inositol-3-P synthase, glutathione S-transferases, and pathogenesis-related proteins. However, the transcript showing the highest rust-induced up-regulation encodes a putative secreted protein with no known function. In contrast, only a few transcripts showed an altered expression in the compatible interaction, suggesting a delay in defense response between incompatible and compatible interactions in poplar. This comprehensive analysis of early molecular responses of poplar to M. larici-populina infection identified key genes that likely contain the fungus proliferation in planta.


Environmental Pollution | 2008

Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power

Pierre Dizengremel; Didier Le Thiec; Matthieu Bagard; Yves Jolivet

The combination of stomatal-dependent ozone flux and total ascorbate level is currently presented as a correct indicator for determining the degree of sensitivity of plants to ozone. However, the large changes in carbon metabolism could play a central role in the strategy of the foliar cells in response to chronic ozone exposure, participating in the supply of reducing power and carbon skeletons for repair and detoxification, and modifying the stomatal mode of functioning. To reinforce the accuracy of the definition of the threshold for ozone risk assessment, it is proposed to also consider the redox pool (NAD(P)H), the ratio between carboxylases and the water use efficiency as indicators of the differential ozone tolerance of plants.


Physiologia Plantarum | 2008

Ozone‐induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves

Matthieu Bagard; Didier Le Thiec; Emilien Delacote; Marie-Paule Hasenfratz-Sauder; Jacques Banvoy; Joëlle Gérard; Pierre Dizengremel; Yves Jolivet

Young poplar trees (Populus tremula Michx. x Populus alba L. clone INRA 717-1B4) were subjected to 120 ppb of ozone for 35 days in phytotronic chambers. Treated trees displayed precocious leaf senescence and visible symptoms of injury (dark brown/black upper surface stippling) exclusively observed on fully expanded leaves. In these leaves, ozone reduced parameters related to photochemistry (Chl content and maximum rate of photosynthetic electron transport) and photosynthetic CO(2) fixation [net CO(2) assimilation, Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase) activity and maximum velocity of Rubisco for carboxylation]. In fully expanded leaves, the rate of photorespiration as estimated from Chl fluorescence was markedly impaired by the ozone treatment together with the activity of photorespiratory enzymes (Rubisco and glycolate oxidase). Immunoblot analysis revealed a decrease in the content of serine hydroxymethyltransferase in treated mature leaves, while the content of the H subunit of the glycine decarboxylase complex was not modified. Leaves in the early period of expansion were exempt from visible symptoms of injury and remained unaffected as regards all measured parameters. Leaves reaching full expansion under ozone exposure showed potential responses of protection (stimulation of mitochondrial respiration and transitory stomatal closure). Our data underline the major role of leaf phenology in ozone sensitivity of photosynthetic processes and reveal a marked ozone-induced inhibition of photorespiration.


Plant Cell and Environment | 2010

Common trade‐offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides ×Populus nigra hybrids

Régis Fichot; Tete Severien Barigah; Sylvain Chamaillard; Didier Le Thiec; Françoise Laurans; Hervé Cochard; Franck Brignolas

We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides x Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Psi(50)) varied from -1.60 to -2.40 MPa. Drought-acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependent, with Psi(50) being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Psi(50) was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water-use efficiency. At the whole-plant level, increased safety was associated with higher shoot growth potential under well-irrigated regime only. We conclude that common trade-offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.


Journal of Experimental Botany | 2011

Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoides×Populus nigra hybrids

Régis Fichot; Sylvain Chamaillard; Claire Depardieu; Didier Le Thiec; Hervé Cochard; Tete Severien Barigah; Franck Brignolas

Tests were carried out to determine whether variations in the hydraulic architecture of eight Populus deltoides×Populus nigra genotypes could be related to variations in leaf function and growth performance. Measurements were performed in a coppice plantation on 1-year-old shoots under optimal irrigation. Hydraulic architecture was characterized through estimates of hydraulic efficiency (the ratio of conducting sapwood area to leaf area, A(X):A(L); leaf- and xylem-specific hydraulic conductance of defoliated shoots, k(SL) and k(SS), respectively; apparent whole-plant leaf-specific hydraulic conductance, k(plant)) and xylem safety (water potential inducing 50% loss in hydraulic conductance). The eight genotypes spanned a significant range of k(SL) from 2.63  kg s(-1) m(-2) MPa(-1) to 4.18  kg s(-1) m(-2) MPa(-1), variations being mostly driven by k(SS) rather than A(X):A(L). There was a strong trade-off between hydraulic efficiency and xylem safety. Values of k(SL) correlated positively with k(plant), indicating that high-pressure flowmeter (HPFM) measurements of stem hydraulic efficiency accurately reflected whole-plant water transport efficiency of field-grown plants at maximum transpiration rate. No clear relationship could be found between hydraulic efficiency and either net CO(2) assimilation rates, water-use efficiency estimates (intrinsic water-use efficiency and carbon isotope discrimination against (13)C), or stomatal characteristics (stomatal density and stomatal pore area index). Estimates of hydraulic efficiency were negatively associated with relative growth rate. This unusual pattern, combined with the trade-off observed between hydraulic efficiency and xylem safety, provides the rationale for the positive link already reported between relative growth rate and xylem safety among the same eight P. deltoides×P. nigra genotypes.


Current Biology | 2013

Developmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate

Florent Pantin; Jeanne Renaud; François Barbier; Alain Vavasseur; Didier Le Thiec; Christophe Rose; Thierry Bariac; Stuart A. Casson; Deirdre H. McLachlan; Alistair M. Hetherington; Bertrand Muller; Thierry Simonneau

Plant water loss and CO2 uptake are controlled by valve-like structures on the leaf surface known as stomata. Stomatal aperture is regulated by hormonal and environmental signals. We show here that stomatal sensitivity to the drought hormone abscisic acid (ABA) is acquired during leaf development by exposure to an increasingly dryer atmosphere in the rosette plant Arabidopsis. Young leaves, which develop in the center of the rosette, do not close in response to ABA. As the leaves increase in size, they are naturally exposed to increasingly dry air as a consequence of the spatial arrangement of the leaves, and this triggers the acquisition of ABA sensitivity. Interestingly, stomatal ABA sensitivity in young leaves is rapidly restored upon water stress. These findings shed new light on how plant architecture and stomatal physiology have coevolved to optimize carbon gain against water loss in stressing environments.


Annals of Forest Science | 2010

DNA methylation and histone acetylation: genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity

Delphine Gourcilleau; Marie-Béatrice Bogeat-Triboulot; Didier Le Thiec; Clément Lafon-Placette; Alain Delaunay; Walid Abu El-Soud; Franck Brignolas; Stéphane Maury

Abstract• Several reports on annual plants have already shown the involvement of epigenetic modifiers such as DNA methylation in their adaptation to abiotic stresses.• Nevertheless, the genotypic variations of epigenetic modifiers, their possible correlations with morphological traits and the impact of water deficit have not been described for perennial plants.• Six genotypes of Populus deltoides × P. nigra were subjected or not to a moderate water deficit treatment. Various morphological traits such as the height of the plants, their biomass and the total leaf area were measured to characterize the productivity in both conditions. Levels of DNA methylation, histone acetylation and the activities and isoform accumulation of the corresponding enzymes were measured at the shoot apex, the site of morphogenesis. Genotypic variation was observed for the morphological traits and the epigenetic variables and correlations were established among them. Genotypic variation for DNA methylation was detected in hybrid poplars. A positive correlation was demonstrated between DNA methylation percentage and productivity under well watered conditions.• While there was a general decrease of growth for all genotypes in response to a moderate water deficit, genotypic dependant variations of DNA methylation were found suggesting different strategies among hybrids.Résumé• Plusieurs études sur des plantes annuelles ont déjà montré l’implication des modifications épigénétiques telles que la méthylation de l’ADN dans la plasticité de leurs réponses aux contraintes abiotiques.• Néanmoins, les variations génotypiques de ces modifications épigénétiques, leur possible corrélation avec des variables de croissance et l’impact d’un déficit hydrique n’ont pas été décrits sur une plante pérenne.• Six génotypes de Populus deltoïdes × P. nigra ont été soumis ou non à un déficit hydrique modéré et plusieurs variables de croissance ont été mesurées afin de caractériser leur productivité. Les niveaux de méthylation de l’ADN, d’acétylation des histones, les activités enzymatiques et l’accumulation des isoformes correspondantes ont été mesurés sur des apex caulinaires, site de la morphogenèse. Des variations génotypiques ont été observées pour les variables de croissance et épigénétiques. Une corrélation positive a été mise en évidence entre la méthylation de l’ADN et la productivité en condition hydrique favorable.• Bien qu’il y ait une diminution générale de la croissance de tous les génotypes en réponse à un déficit hydrique modéré, des variations génotype-dépendant de la méthylation de l’ADN ont été trouvées suggérant différentes stratégies entre hybrides.


Environmental and Experimental Botany | 1998

Reactions of Norway spruce and beech trees to 2 years of ozone exposure and episodic drought

Martin Dixon; Didier Le Thiec; Jean Pierre Garrec

Abstract Nine-year-old Norway spruce from two clones and beech grown in open-top chambers were exposed to both drought and elevated (ambient +0.05 μl l −1 ) ozone. Beech was less damaged from the effects of ozone by drought. Compared to trees exposed to elevated ozone and well watered, beech trees grown under elevated ozone and exposed to drought had lower CO 2 compensation points and were not affected by foliar necroses observed in well watered trees. Both Norway spruce clones were more resistant than beech to ozone alone, but the Istebna clone grown in drought and elevated ozone showed an increased stomatal conductance. Therefore these trees have significantly more negative pre-dawn leaf water potentials than droughted trees grown in filtered air (without ozone). The increased stomatal conductance implies a greater ozone flux to the needles. In association with this increased ozone uptake, 1-year-old needles became discoloured and were prematurely shed.

Collaboration


Dive into the Didier Le Thiec's collaboration.

Top Co-Authors

Avatar

Pierre Dizengremel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Yves Jolivet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

David Cohen

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joëlle Gérard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Béatrice Bogeat-Triboulot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Béatrice Richard

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge