Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego A. Golombek is active.

Publication


Featured researches published by Diego A. Golombek.


Neuroscience & Biobehavioral Reviews | 1996

Melatonin Effects on Behavior: Possible Mediation by the Central GABAergic System

Diego A. Golombek; Paul Pévet; Daniel P. Cardinali

The best described function of the pineal hormone melatonin is to regulate seasonal reproduction, with its daily production and secretion varying throughout the seasons or the photoperiod. Additionally, a number of behavioral effects of the hormone have been found. This review describes the effects of melatonin in rodent behavior. We focus on: (a) inhibitory effects (sedation, hypnotic activity, pain perception threshold elevation, anti-convulsive activity, anti-anxiety effects); and (b) direct effects on circadian rhythmicity (entrainment, resynchronization, alleviation of jet-lag symptoms, phase-shifting). Most of these effects are clearly time-dependent, with a peak of melatonin activity during the night. One of the possible mechanisms of action for melatonin in the brain is the interaction with the GABAergic system, as suggested by neurochemical and behavioral data. Finally, some pineal hormone effects might be candidates as putative therapies for several human disorders.


European Journal of Pharmacology | 1991

Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonism

Diego A. Golombek; Esteban Escolar; Leila J. Burin; María G. De Brito Sánchez; Daniel P. Cardinali

The aim of this study was to determine whether melatonin-induced analgesia in mice exhibits the time dependency known to occur for several other effects of the hormone, and to analyze to what extent the activity of melatonin can be inhibited by the opiate antagonist naloxone or the central-type benzodiazepine (BZP) antagonist Ro 15-1788. Analgesia was assessed with the hot plate procedure. There was a significant diurnal variation in the pain threshold, with an increase in latency during the dark phase of the daily photo period. Melatonin (20-40 mg/kg i.p.) exhibited maximal analgesic effects at late evening (20:00 h). The administration of naloxone or Ro 15-1788 at 20:00 h, although unable by themselves to modify pain threshold, blunted the analgesic response to melatonin. Significant increases in the latency of the hot plate response were found after diazepam injection, an effect blocked by Ro 15-1788 or naloxone. These results indicate that time-dependent melatonin analgesia is sensitive to opioid or central-type BZP antagonism.


Chronobiology International | 2013

Crosstalk between the circadian clock circuitry and the immune system

Nicolas Cermakian; Tanja Lange; Diego A. Golombek; Dipak K. Sarkar; Atsuhito Nakao; Shigenobu Shibata; Gianluigi Mazzoccoli

Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption. (Author correspondence: [email protected])


European Journal of Pharmacology | 1993

Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system

Diego A. Golombek; Mariana Martini; Daniel P. Cardinali

Anxiolytic and pro-exploratory melatonin properties were assessed in rats using a plus-maze procedure. Both melatonin (1 mg/kg) and diazepam (0.5 mg/kg) showed a significant diurnal variation to decrease anxiety and to promote exploratory behavior. Melatonin displayed anxiolytic activity at night, with absence of effects at noon and a weak activity at the beginning of the light phase. Melatonin pro-exploratory activity was found only at night. Diazepam exerted significant anxiolysis during the night, with less activity during the day. Diazepam pro-exploratory activity was found during the night only. A dose-response study carried out by injecting 1-20 mg/kg melatonin at 12:00 or 18:00 h indicated that melatonin activity was greatest at 18:00 h. Diazepam was anxiolytic at both times, and pro-exploratory at 18:00 h only. Melatonin activity was blunted by administration of the benzodiazepine antagonist, flumazenil.


Neuroreport | 1996

Neuropeptide Y phase shifts the circadian clock in vitro via a Y2 receptor

Diego A. Golombek; Stephany M. Biello; Regina A. Rendon; Mary E. Harrington

The suprachiasmatic nuclei (SCN) contain a circadian clock whose activity can be recorded in vitro for several days. This clock can be reset by the application of neuropeptide Y. In this study, we focused on determination of the receptor responsible for neuropeptide Y phase shifts of the hamster circadian clock in vitro. Coronal hypothalamic slices containing the SCN were prepared from Syrian hamsters housed under a 14 h:10 h light:dark cycle. Tissue was bathed in artificial cerebrospinal fluid (ACSF), and the firing rates of individual cells were sampled throughout a 12 h period. Control slices received either no application or application of 200 nl ACSF to the SCN at zeitgeber time 6 (ZT6; ZT12 was defined as the time of lights off). Application of 200 ng/200 nl of neuropeptide Y at ZT6 resulted in a phase advance of 3.4 h. Application of the Y2 receptor agonist, neuropeptide Y (3-36), induced a similar phase advance in the rhythm, while the Y1 receptor agonist, [Leu31, Pro34]-neuropeptide Y had no effect. Pancreatic polypeptide (rat or avian) also had no measurable phase-shifting effect. Neuropeptide Y applied at ZT20 or 22 had no detectable phase-shifting effect. These results suggest that the phase-shifting effects of neuropeptide Y are mediated through a Y2 receptor, similar to results found in vivo.


The Journal of Neuroscience | 2007

Ghrelin Effects on the Circadian System of Mice

Paola C. Yannielli; Penny C. Molyneux; Mary E. Harrington; Diego A. Golombek

The orexigenic peptide ghrelin stimulates both food intake and growth hormone release and is synthesized in the stomach and in hypothalamic areas involved in feeding control. The suprachiasmatic nuclei of the hypothalamus (SCN) control most circadian rhythms, although there is evidence that some oscillators, such as food-entrainable oscillators, can drive activity rhythms even after SCN ablation. Ghrelin levels exhibit a circadian rhythm and closely follow feeding schedules, making this peptide a putative candidate for food-related entraining signals. We examined the response of the SCN to ghrelin treatments in vitro, by means of electrophysiological and bioluminescence recordings, and in vivo, by assessing effects on the phase of locomotor activity rhythms. Ghrelin applied at circadian time 6 in vitro to cultured SCN slices induced an ∼3 h phase advance. In addition, ghrelin phase advanced the rhythm of PER2::LUC (Period2::Luciferase) expression in cultured SCN explants from mPer2Luc transgenic mice. In vivo, intraperitoneal administration of ghrelin or a synthetic analog, growth hormone-releasing protein-6 (GHRP-6), to ad libitum fed animals failed to alter circadian phase. When injected after 30 h of food deprivation, GHRP-6 induced a phase advance compared with saline-injected animals. These results indicate that ghrelin may play a role in the circadian system by exerting a direct action on the SCN and that the system as a whole may become sensitive to ghrelin and other feeding-related neuropeptides under conditions of food restriction.


Neurochemistry International | 2004

Signaling in the mammalian circadian clock: the NO/cGMP pathway

Diego A. Golombek; Patricia V. Agostino; Santiago A. Plano; Gabriela A Ferreyra

Mammalian circadian rhythms are generated by a hypothalamic suprachiasmatic nuclei (SCN) clock. Light pulses synchronize body rhythms by inducing phase delays during the early night and phase advances during the late night. Phosphorylation events are known to be involved in circadian phase shifting, both for delays and advances. Pharmacological inhibition of the cGMP-dependent kinase (cGK) or Ca2+/calmodulin-dependent kinase (CaMK), or of neuronal nitric oxide synthase (nNOS) blocks the circadian responses to light in vivo. Light pulses administered during the subjective night, but not during the day, induce rapid phosphorylation of both p-CAMKII and p-nNOS (specifically phosphorylated by CaMKII). CaMKII inhibitors block light-induced nNOS activity and phosphorylation, suggesting a direct pathway between both enzymes. Furthermore, SCN cGMP exhibits diurnal and circadian rhythms with maximal values during the day or subjective day. This variation of cGMP levels appears to be related to temporal changes in phosphodiesterase (PDE) activity and not to guanylyl cyclase (GC) activity. Light pulses increase SCN cGMP levels at circadian time (CT) 18 (when light causes phase advances of rhythms) but not at CT 14 (the time for light-induced phase delays). cGK II is expressed in the hamster SCN and also exhibits circadian changes in its levels, peaking during the day. Light pulses increase cGK activity at CT 18 but not at CT 14. In addition, cGK and GC inhibition by KT-5823 and ODQ significantly attenuated light-induced phase shifts at CT 18. This inhibition did not change c-Fos expression SCN but affected the expression of the clock gene per in the SCN. These results suggest a signal transduction pathway responsible for light-induced phase advances of the circadian clock which could be summarized as follows: Glu-Ca2+-CaMKII-nNOS-GC-cGMP-cGK-->-->clock genes. This pathway offers a signaling window that allows peering into the circadian clock machinery in order to decipher its temporal cogs and wheels.


Journal of Neuroimmunology | 2005

Circadian responses to endotoxin treatment in mice

Luciano Marpegan; Tristan A. Bekinschtein; Mónica A. Costas; Diego A. Golombek

We tested the ability of Escherichia coli lipopolysaccharide (LPS) to phase-shift the activity circadian rhythm in C57Bl/6J mice. Intraperitoneal administration of 25 microg/kg LPS induced photic-like phase delays (-43+/-10 min) during the early subjective night. These delays were non-additive to those induced by light at CT 15, and were reduced by the previous administration of sulfasalazine, a NF-kappaB activation inhibitor. At CT 15, LPS induced c-Fos expression in the dorsal area of the suprachiasmatic nuclei (SCN). Our results suggest that the activation of the immune system should be considered an entraining signal for the murine circadian clock.


Chronobiology International | 2009

DIURNAL VARIATION IN ENDOTOXIN-INDUCED MORTALITY IN MICE: CORRELATION WITH PROINFLAMMATORY FACTORS

Luciano Marpegan; María Juliana Leone; Marcelo E. Katz; Patricio Sobrero; Tristan A. Bekinstein; Diego A. Golombek

Many immune parameters exhibit daily and circadian oscillations, including the number of circulating cells and levels of cytokines in the blood. Mice also have a differential susceptibility to lipopolysaccharide (LPS or endotoxin)-induced endotoxic shock, depending on the administration time in the 24 h light-dark (LD) cycle. We replicated these results in LD, but we did not find temporal differences in LPS-induced mortality in constant darkness (DD). Animals challenged with LPS showed only transient effects on their wheel locomotor activity rhythm without modification of circadian period and phase. Levels of several key factors involved in the pathology of sepsis and septic shock were tested in LD. We found that LPS-induced levels of interleukin (IL)-1β, IL-6, JE (MCP-1), and MIP1α were significantly higher at zeitgeber time (ZT) 11 (time of increased mortality) than at ZT19 (ZT12 = time of lights-off in the animal quarters for the 12L:12D condition). Our results indicate that the differences found in mortality that are dependent on the time of LPS-challenge are not directly related to an endogenous circadian clock, and that some relevant immune factors in the development of sepsis are highly induced at ZT11, the time of higher LPS-induced mortality, compared to ZT19. (Author correspondence: [email protected])


Journal of Neuroscience Methods | 2007

An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application

Sergio H. Simonetta; Diego A. Golombek

Automation of simple behavioral patterns, such as locomotor activity, is fundamental for pharmacological and genetic screening studies. Recently, circadian behaviors in locomotor activity and stress responses were reported in the nematode Caenorhabditis elegans, a well-known model in genetics and developmental studies. Here we present a new method for long-term recordings of C. elegans (as well as other similar-sized animals) locomotor activity based on an infrared microbeam scattering. Individual nematodes were cultured in a 96-well microtiter plate; we tested L15, CeMM and E. coli liquid cultures in long-term activity tracking experiments, and found CeMM to be the optimal medium. Treatment with 0.2% azide caused an immediate decrease in locomotor activity as recorded with our system. In addition to the validation of the method (including hardware and software details), we report its application in chronobiological studies. Circadian rhythms in animals entrained to light-dark and constant dark conditions (n=48 and 96 worms, respectively) at 16 degrees C, were analyzed by LS periodograms. We obtained a 24.2+/-0.44 h period (52% of significantly rhythmic animals) in LD, and a 23.1+/-0.40 h period (37.5% of significantly rhythmic animals) under DD. The system is automateable using microcontrollers, of low-cost construction and highly reproducible.

Collaboration


Dive into the Diego A. Golombek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia V. Agostino

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Santiago A. Plano

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Marpegan

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan J. Chiesa

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José M. Duhart

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge