Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Kyburz is active.

Publication


Featured researches published by Diego Kyburz.


Arthritis & Rheumatism | 2008

Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis

Joanna Stanczyk; Deena M. Leslie Pedrioli; Fabia Brentano; Olga Sánchez-Pernaute; Christoph Kolling; Michael Detmar; Diego Kyburz

OBJECTIVE MicroRNAs (miRNA) have recently emerged as a new class of modulators of gene expression. In this study we investigated the expression, regulation, and function of miR-155 and miR-146a in rheumatoid arthritis (RA) synovial fibroblasts (RASFs) and RA synovial tissue. METHODS Locked nucleic acid microarray was used to screen for differentially expressed miRNA in RASFs treated with tumor necrosis factor alpha (TNFalpha). TaqMan-based real-time polymerase chain reaction was applied to measure the levels of miR-155 and miR-146a. Enforced overexpression of miR-155 was used to investigate the function of miR-155 in RASFs. RESULTS Microarray analysis of miRNA expressed in RASFs treated with TNFalpha revealed a prominent up-regulation of miR-155. Constitutive expression of both miR-155 and miR-146a was higher in RASFs than in those from patients with osteoarthritis (OA), and expression of miR-155 could be further induced by TNFalpha, interleukin-1beta, lipopolysaccharide, poly(I-C), and bacterial lipoprotein. The expression of miR-155 in RA synovial tissue was higher than in OA synovial tissue. Enforced expression of miR-155 in RASFs was found to repress the levels of matrix metalloproteinase 3 (MMP-3) and reduce the induction of MMPs 3 and 1 by Toll-like receptor ligands and cytokines. Moreover, compared with monocytes from RA peripheral blood, RA synovial fluid monocytes displayed higher levels of miR-155. CONCLUSION This study provides the first description of increased expression of miRNA miR-155 and miR-146a in RA. Based on these findings, we postulate that the inflammatory milieu may alter miRNA expression profiles in resident cells of the rheumatoid joints. Considering the repressive effect of miR-155 on the expression of MMPs 3 and 1 in RASFs, we hypothesize that miR-155 may be involved in modulation of the destructive properties of RASFs.


Journal of Immunology | 2004

Chemokine Secretion of Rheumatoid Arthritis Synovial Fibroblasts Stimulated by Toll-Like Receptor 2 Ligands

Matthias Pierer; Janine Rethage; Reinhart Seibl; Roger Lauener; Fabia Brentano; Ulf Wagner; Holm Häntzschel; Beat A. Michel; Diego Kyburz

To analyze the role of Toll-like receptors (TLR) in the pathogenesis of rheumatoid arthritis, we have assessed the effects of stimulation of cultured synovial fibroblasts by the TLR-2 ligand bacterial peptidoglycan. By using high density oligonucleotide microarray analysis we identified 74 genes that were up-regulated >2.5-fold. Fourteen CC and CXC chemokine genes were among the genes with the highest up-regulation. Quantitative real-time PCR analysis confirmed up-regulation of granulocyte chemotactic protein (GCP)-2, RANTES, monocyte chemoattractant protein (MCP)-2, IL-8, growth-related oncogene-2, and to a lesser extent, macrophage-inflammatory protein 1α, MCP-1, EXODUS, and CXCL-16. GCP-2, RANTES, and MCP-2 were detected in culture supernatants of synovial fibroblasts stimulated with peptidoglycan. Chemokine secretion induced by stimulation of rheumatoid arthritis synovial fibroblasts via TLR-2 was functionally relevant as demonstrated by chemotaxis assays. GCP-2 and MCP-2 expression, which have not been reported previously in rheumatoid arthritis, was demonstrated in synovial tissue sections of patients diagnosed with rheumatoid arthritis but not in those with osteoarthritis. Correspondingly, synovial fluid levels were significantly higher in patients diagnosed with rheumatoid arthritis as compared with osteoarthritis. Thus, we present evidence for an induction of chemokine secretion by activation of synovial fibroblasts via TLR-2, possibly contributing to the formation of inflammatory infiltrates characteristically found in rheumatoid arthritis joints.


Arthritis & Rheumatism | 2011

Altered Expression of MicroRNA-203 in Rheumatoid Arthritis Synovial Fibroblasts and Its Role in Fibroblast Activation

Joanna Stanczyk; Caroline Ospelt; Emmanuel Karouzakis; Andrew Filer; Karim Raza; Christoph Kolling; Christopher D. Buckley; Paul P. Tak; Diego Kyburz

OBJECTIVE MicroRNA (miRNA) are recognized as important regulators of a variety of fundamental biologic processes. Previously, we described increased expression of miR-155 and miR-146a in rheumatoid arthritis (RA) and showed a repressive effect of miR-155 on matrix metalloproteinase (MMP) expression in RA synovial fibroblasts (RASFs). The present study was undertaken to examine alterations in expression of miR-203 in RASFs and analyze its role in fibroblast activation. METHODS Differentially expressed miRNA in RASFs versus osteoarthritis synovial fibroblasts (OASFs) were identified by real-time polymerase chain reaction (PCR)-based screening of 260 individual miRNA. Transfection of miR-203 precursor was used to analyze the function of miR-203 in RASFs. Levels of interleukin-6 (IL-6) and MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay. RASFs were stimulated with IL-1β, tumor necrosis factor α (TNFα), lipopolysaccharide (LPS), and 5-azacytidine (5-azaC). Activity of IκB kinase 2 was inhibited with SC-514. RESULTS Expression of miR-203 was higher in RASFs than in OASFs or fibroblasts from healthy donors. Levels of miR-203 did not change upon stimulation with IL-1β, TNFα, or LPS; however, DNA demethylation with 5-azaC increased the expression of miR-203. Enforced expression of miR-203 led to significantly increased levels of MMP-1 and IL-6. Induction of IL-6 by miR-203 overexpression was inhibited by blocking of the NF-κB pathway. Basal expression levels of IL-6 correlated with basal expression levels of miR-203. CONCLUSION The current results demonstrate methylation-dependent regulation of miR-203 expression in RASFs. Importantly, they also show that elevated levels of miR-203 lead to increased secretion of MMP-1 and IL-6 via the NF-κB pathway and thereby contribute to the activated phenotype of synovial fibroblasts in RA.


Arthritis & Rheumatism | 2008

Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis†

Caroline Ospelt; Fabia Brentano; Yvonne Rengel; Joanna Stanczyk; Christoph Kolling; Paul P. Tak; Diego Kyburz

OBJECTIVE To analyze the expression, regulation, and biologic relevance of Toll-like receptors (TLRs) 1-10 in synovial and skin fibroblasts and to determine the expression levels of TLRs 2, 3, and 4 in synovial tissues from patients with early rheumatoid arthritis (RA), longstanding RA, and osteoarthritis (OA). METHODS Expression of TLRs 1-10 in RA synovial fibroblasts (RASFs), OASFs, and skin fibroblasts was analyzed by real-time polymerase chain reaction (PCR). Fibroblasts were stimulated with tumor necrosis factor alpha, interleukin-1beta (IL-1beta), bacterial lipopeptide, poly(I-C), lipopolysaccharide, and flagellin. Production of IL-6 was determined by enzyme-linked immunosorbent assay and induction of TLRs 2-5, matrix metalloproteinases (MMPs) 3 and 13 messenger RNA by real-time PCR. Expression of TLRs 2-4 in synovial tissues was analyzed by immunohistochemistry. RESULTS Synovial fibroblasts expressed TLRs 1-6, but not TLRs 7-10. Among the expressed TLRs, TLR-3 and TLR-4 were the most abundant in synovial fibroblasts, and stimulation of synovial fibroblasts with the TLR-3 ligand poly(I-C) led to the most pronounced increase in IL-6, MMP-3, and MMP-13. In contrast, skin fibroblasts did not up-regulate MMP-3 or MMP-13 after stimulation with any of the tested stimuli. In synovial tissues from patients with early RA, TLR-3 and TLR-4 were highly expressed and were comparable to the levels of patients with longstanding RA. These expression levels were elevated as compared with those in OA. CONCLUSION Our findings of high expression of TLRs, particularly TLRs 3 and 4, at an early stage of RA and the reactivity of synovial fibroblasts in vitro to TLR ligands suggest that TLR signaling pathways resulting in persistent inflammation and joint destruction are activated early in the disease process.


Springer Seminars in Immunopathology | 2003

The KRN mouse model of inflammatory arthritis

Diego Kyburz; Maripat Corr

Abstract. In 1996 a new murine model of spontaneous arthritis was described by the group of Benoist and Mathis. Mice transgenic for a T cell receptor recognizing an epitope of bovine RNase and bred onto a NOD background developed severe destructive arthritis, which resembles human rheumatoid arthritis in many respects. The development of disease requires the presence of T and B lymphocytes and is dependent on the MHC class II molecule I-Ag7. B cell activation by antigen and an additional CD40-CD40 ligand interaction was found to give rise to the production of autoantibodies. Glucose-6-phosphate isomerase was identified as the target of the autoantibodies; moreover, the transgenic T cells were demonstrated to exhibit a dual specificity for both bovine RNase and glucose-6-phosphate isomerase. Importantly, the arthritis is serum transferable to normal recipients, enabling the examination of the pathogenic mechanisms of joint inflammation and destruction. Recent studies suggest the crucial involvement of the innate immune system in the development of antibody-induced arthritis. Complement components, Fc receptors and neutrophils are indispensable for disease induction. An overview of the existing data is given and the emerging concepts of the pathogenesis of the K/BxN arthritis are discussed with respect to their relevance for human rheumatoid arthritis. Because of the reliable and robust induction of joint inflammation by serum transfer this new disease model has been and will be a valuable means to address the as-yet-unanswered key questions related to the development of arthritis.


Arthritis & Rheumatism | 2012

Down‐regulation of microRNA‐34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance

Fabienne Niederer; Michelle Trenkmann; Caroline Ospelt; Emmanuel Karouzakis; Joanna Stanczyk; Christoph Kolling; Michael Detmar; Astrid Jüngel; Diego Kyburz

OBJECTIVE To investigate the expression and effect of the microRNA-34 (miR-34) family on apoptosis in rheumatoid arthritis synovial fibroblasts (RASFs). METHODS Expression of the miR-34 family in synovial fibroblasts with or without stimulation with Toll-like receptor (TLR) ligands, tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), hypoxia, or 5-azacytidine was analyzed by real-time polymerase chain reaction (PCR). Promoter methylation was studied by combined bisulfite restriction analysis. The effects of overexpression and silencing of miR-34a and miR-34a* on apoptosis were analyzed by annexin V/propidium iodide staining. Production of X-linked inhibitor of apoptosis protein (XIAP) was assessed by real-time PCR and immunohistochemistry analysis. Reporter gene assay was used to study the signaling pathways of miR-34a*. RESULTS Basal expression levels of miR-34a* were found to be reduced in synovial fibroblasts from RA patients compared to osteoarthritis patients, whereas levels of miR-34a, miR-34b/b*, and miR-34c/c* did not differ. Neither TNFα, IL-1β, TLR ligands, nor hypoxia altered miR-34a* expression. However, we demonstrated that the promoter of miR-34a/34a* was methylated and showed that transcription of the miR-34a duplex was induced upon treatment with demethylating agents. Enforced expression of miR-34a* led to an increased rate of FasL- and TRAIL-mediated apoptosis in RASFs. Moreover, levels of miR-34a* were highly correlated with expression of XIAP, which was found to be up-regulated in RA synovial cells. Finally, we identified XIAP as a direct target of miR-34a*. CONCLUSION Our data provide evidence of a methylation-specific down-regulation of proapoptotic miR-34a* in RASFs. Decreased expression of miR- 34a* results in up-regulation of its direct target XIAP, thereby contributing to resistance of RASFs to apoptosis.


Nature Reviews Rheumatology | 2006

Mode of action of hydroxychloroquine in RA—evidence of an inhibitory effect on toll-like receptor signaling

Diego Kyburz; Fabia Brentano

Antimalarial drugs have been used for many years to treat rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. This Viewpoint will discuss the recent advances in understanding the mechanisms of action of hydroxychloroquine and the possibility of establishing toll-like receptor signalling molecules as targets for new therapies.


Annals of the Rheumatic Diseases | 2008

Abundant expression of the interleukin (IL)23 subunit p19, but low levels of bioactive IL23 in the rheumatoid synovium: differential expression and Toll-like receptor-(TLR) dependent regulation of the IL23 subunits, p19 and p40, in rheumatoid arthritis

Fabia Brentano; Caroline Ospelt; Joanna Stanczyk; Diego Kyburz

Objective: Interleukin (IL)23, composed of a p19 and a p40 subunit, is suggested to play key roles in rheumatoid arthritis (RA), dependent on the promotion and proliferation of IL17-producing T helper (Th)17 cells. However, previous studies on IL23 expression in human tissues were based on the p19 subunit only. We aimed to study the expression and regulation of IL23 subunits p19 and p40 in RA compared to patients with osteoarthritis (OA). Methods: The expression of p19 and p40 in synovial tissues was analysed by in situ hybridisation and immunohistochemistry. IL23 in RA and OA synovial fluids and sera was determined by ELISA. Toll-like receptor (TLR)-dependent induction of p19, p40 and bioactive IL23 was determined in RA synovial fibroblasts (RASF), monocytes and monocyte-derived dendritic cells (MDDCs) by real-time PCR and reverse transcriptase (RT)-PCR, Western blot and functional assays. Results: The p19 subunit was abundantly expressed in RA but not in OA synovial tissues. p19 was most prominently expressed by RASF in the synovial lining layer and at the site of invasion, but no heterodimeric IL23 was detected at these sites. Correspondingly, soluble IL23 was not detectable or found at very low levels in synovial fluids and sera of patients with RA. By in vitro experiments, we confirmed that TLR-activated RASF expressed p19 but not p40, in contrast to monocytes, which produced IL23 following TLR stimulation. Conclusion: The TLR-dependent induction of p19 but not p40 in RASF and the abundant expression of p19 along with the low or undetectable levels of IL23 in patients with RA provides strong evidence that p19 does not necessarily indicate the presence of IL23, as has been proposed to date.


Annals of the Rheumatic Diseases | 2009

Type I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA)

M.F. Roelofs; Mark H. Wenink; Fabia Brentano; Shahla Abdollahi-Roodsaz; Birgitte Oppers-Walgreen; Pilar Barrera; P.L.C.M. van Riel; Lab Joosten; Diego Kyburz; W.B. van den Berg; T.R.D.J. Radstake

Background: Rheumatoid arthritis (RA) has been associated with an increased risk of infections, but the underlying pathways have not yet been identified. Toll-like receptors (TLR) probably play a role in synovial inflammation and may also contribute to the understanding of the role of infections in RA. Objectives: To investigate if the synovial expression of TLR3 and TLR7 in RA correlates with that of inflammatory cytokines, and to assess whether this has functional consequences for local cytokine production and to study potential links between the TLR3/7 axis and TLR4 in RA synovium. Methods: Immunohistochemistry was used to study the expression of TLR3, TLR7, interferon α (IFNα), tumour necrosis factor α (TNFα) and interleukins IL1β, IL12, IL17 and IL18 in RA synovium obtained by arthroscopy from 34 patients with RA. Monocytes, monocyte-derived dendritic cells (MoDCs) and RA synovial fibroblasts were stimulated via TLR3 (poly-IC) and TLR7 (loxorubin), after which IL1β, IL6 and TNFα were measured by Luminex bead array technology. Following preincubation with IFNα, IL1β and IL18, TLR3 and TLR7 mRNA expression was assessed using real-time PCR. Cytokine production after preincubation with IFNα and subsequent TLR stimulation was measured. Results: Synovial TLR3/7 expression was co-expressed with IFNα, IL1β and IL18, but not with TNFα, IL12 and IL17. Stimulation of TLR3/TLR7 on monocytes, MoDCs or synovial fibroblasts led to secretion of type I IFN but no biologically active IL1β or IL18 could be detected. Type I IFNα increased TLR3/7 mRNA expression whereas IL1β and IL18 did not. In spite of the fact that the mRNA level of TLR4 remained unchanged, IFNα enhanced the response to TLR4 agonists, a phenomenon that was clearly more marked in patients with RA. Conclusion: Type I interferons are highly co-expressed with TLR3/TLR7 in RA synovium. They enhance TLR3/TLR7-mediated cytokine production and also TLR4-mediated responses.


American Journal of Pathology | 2003

Cartilage Destruction Mediated by Synovial Fibroblasts Does Not Depend on Proliferation in Rheumatoid Arthritis

Christian A. Seemayer; Stefan Kuchen; Peter Kuenzler; Veronika Řihošková; Janine Rethage; Wilhelm K. Aicher; Beat A. Michel; Diego Kyburz

The aim of the study was to investigate the relationship between invasion and proliferation in rheumatoid arthritis synovial fibroblasts (RASFs). In vitro, RASFs, normal synovial fibroblasts (NSFs), and RASFs transformed with SV40 T-antigen (RASF(SV40)) were analyzed for the expression of cell surface markers (Thy1, VCAM-1, ICAM-1, CD40, CD44) and their proliferation by flow cytometry. Furthermore, colony-forming unit assays were performed and the expression of matrix metalloproteinases (MMP)-14 and cathepsin K mRNA were determined by real-time polymerase chain reaction. In vivo, in the severe combined immunodeficiency (SCID) mouse co-implantation model, RASFs, NSFs, and RASF(SV40) were tested for cartilage invasion, cellular density, and for their expression of the cell cycle-associated protein Ki67. In the SCID mouse co-implantation model, RASFs invaded significantly stronger into the cartilage than NSFs and RASF(SV40). Of note, RASF(SV40) cells formed tumor-like tissues, and the cellular density adjacent to the cartilage was significantly higher than in RASFs or NSFs. In turn, the proliferation marker Ki67 was strongly expressed in the SV40-transformed synoviocytes in SCID mice, but not in RASFs, and specifically not at sites of cartilage invasion. Using the colony-forming unit assay, RASFs and NSFs did not form colonies, whereas RASF(SV40) lost contact inhibition. In vitro, the proliferative rate of RASFs was low (4.3% S phase) in contrast to RASF(SV40) (24.4%). Expression of VCAM-1 was significantly higher, whereas of ICAM-1 was significantly lower, in RASFs than in RASF(SV40). CD40 was significantly stronger expressed in RASF(SV40), whereas CD44 and AS02 were present at the same degree in almost all synoviocytes. Expression of cathepsin K and matrix metalloproteinase-14 mRNA was significantly higher in RASFs than in the RASF(SV40). Our data demonstrate clearly that invasion of cartilage is mediated by activated RASFs characterized by increased expression of adhesion molecules, matrix-degrading enzymes, but does not depend on cellular proliferation, suggesting the dissociation of invasion and proliferation in RASFs.

Collaboration


Dive into the Diego Kyburz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Dudler

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Burkhard Möller

University Hospital of Bern

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge