Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Mora is active.

Publication


Featured researches published by Diego Mora.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector

Guido Favia; Irene Ricci; Claudia Damiani; Noura Raddadi; Elena Crotti; Massimo Marzorati; Aurora Rizzi; Roberta Urso; Lorenzo Brusetti; Sara Borin; Diego Mora; Patrizia Scuppa; Luciano Pasqualini; Emanuela Clementi; Marco Genchi; Silvia Corona; Ilaria Negri; G. Grandi; Alberto Alma; L. Kramer; Fulvio Esposito; Claudio Bandi; Luciano Sacchi; Daniele Daffonchio

Here, we show that an α-proteobacterium of the genus Asaia is stably associated with larvae and adults of Anopheles stephensi, an important mosquito vector of Plasmodium vivax, a main malaria agent in Asia. Asaia bacteria dominate mosquito-associated microbiota, as shown by 16S rRNA gene abundance, quantitative PCR, transmission electron microscopy and in situ-hybridization of 16S rRNA genes. In adult mosquitoes, Asaia sp. is present in high population density in the female gut and in the male reproductive tract. Asaia sp. from An. stephensi has been cultured in cell-free media and then transformed with foreign DNA. A green fluorescent protein-tagged Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission. The larval gut and the male reproductive system were also colonized by the transformed Asaia sp. strain. As an efficient inducible colonizer of mosquitoes that transmit Plasmodium sp., Asaia sp. may be a candidate for malaria control.


Journal of Applied Microbiology | 2002

Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products

Diego Mora; Maria Grazia Fortina; Carlo Parini; Giovanni Ricci; M. Gatti; G. Giraffa; Pier Luigi Manachini

Aims: To evaluate the genetic diversity and the technological properties of 44 strains of Streptococcus thermophilus isolated from dairy products. 
Methods and Results: Strains were analysed for some relevant technological properties, i.e. exopolysaccharide (EPS) production, growth kinetic in skim milk medium, urease activity and galactose fermentation. The EPS production, determined by evaluating the colour of the colonies grown in ruthenium red milk agar, was observed in 50% of the analysed strains. Urease activity, determined by colorimetric and conductimetric methods, showed that 91% of the isolates, all except four, could hydrolyse urea. A conductimetric approach was also used for the evaluation of the overall metabolic behaviour in milk of Strep. thermophilus strains and the differences observed allowed grouping of the strains in seven different clusters. A total of 11 strains were able to produce acid in presence of galactose. Genetic diversity of Streptococcus thermophilus strains, evaluated by Random Amplified Polymorphic DNA fingerprinting (RAPD) and amplified epsC–D restriction analysis, allowed the identification of 21 different genotypes. 
Conclusions: Comparison between the genotypic and phenotypic data highlights an interesting correlation between some important technological properties and well‐defined genotypes. 
Significance and Impact of the Study: The genetic and technological characterization carried out on several Strep. thermophilus strains of dairy origin should expand the knowledge on this important lactic acid bacteria species and lead to a simple, rapid, and reliable identification of strains on the basis of well‐defined biotechnological properties.


Applied and Environmental Microbiology | 2008

Implication of an Outer Surface Lipoprotein in Adhesion of Bifidobacterium bifidum to Caco-2 Cells

Simone Guglielmetti; Isabella Tamagnini; Diego Mora; Mario Minuzzo; Alessio Scarafoni; Stefania Arioli; Jukka Hellman; Matti Karp; Carlo Parini

ABSTRACT We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.


Microbiology | 2000

Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: relationships between pediocin AcH/PA-1 producing and non-producing strains

Diego Mora; Maria Grazia Fortina; Carlo Parini; Daniele Daffonchio; Pier Luigi Manachini

A high degree of genetic polymorphism among P. acidilactici strains was highlighted by a multilocus typing approach analysing several housekeeping genes and by sampling the whole genome using random amplified polymorphic DNA (RAPD) fingerprint analysis performed by using a single primer pedA gene targeted in low-stringency amplification conditions. Restriction fragment length polymorphism of the rpoC, ldhD/L and mle genes, and a modified RAPD analysis, permitted the grouping of Pediococcus acidilactici strains in seven genotypes (I-VII). Genotypic results obtained by analysing housekeeping genes involved in the transcription/translation machinery and in primary metabolism were supported by phylogenetic analysis based on the partial 16S rDNA sequencing of a reference strain of each of the seven clusters obtained. Three of the seven genotypes detected showed relationships with pediocin AcH/PA-1 production and carbohydrate fermentation patterns: all pediocin-producing and sucrose-positive strains were grouped in genotype VII, melibiose-, sucrose- and raffinose-positive strains in genotype VI, and arabinose-positive strains in genotype V.


Applied and Environmental Microbiology | 2003

Nature of Polymorphisms in 16S-23S rRNA Gene Intergenic Transcribed Spacer Fingerprinting of Bacillus and Related Genera

Daniele Daffonchio; Ameur Cherif; Lorenzo Brusetti; Aurora Rizzi; Diego Mora; Abdellatif Boudabous; Sara Borin

ABSTRACT The intergenic transcribed spacers (ITS) between the 16S and 23S rRNA genetic loci are frequently used in PCR fingerprinting to discriminate bacterial strains at the species and intraspecies levels. We investigated the molecular nature of polymorphisms in ITS-PCR fingerprinting of low-G+C-content spore-forming bacteria belonging to the genera Bacillus, Brevibacillus, Geobacillus, and Paenibacillus. We found that besides the polymorphisms in the homoduplex fragments amplified by PCR, heteroduplex products formed during PCR between amplicons from different ribosomal operons, with or without tRNA genes in the ITS, contribute to the interstrain variability in ITS-PCR fingerprinting patterns obtained in polyacrylamide-based gel matrices. The heteroduplex nature of the discriminating bands was demonstrated by fragment separation in denaturing polyacrylamide gels, by capillary electrophoresis, and by cloning, sequencing, and recombination of purified short and tRNA gene-containing long ITS. We also found that heteroduplex product formation is enhanced by increasing the number of PCR cycles. Homoduplex-heteroduplex polymorphisms (HHP) in a conserved region, such as the 16S and 23S rRNA gene ITS, allowed discrimination of closely related strains and species undistinguishable by other methods, indicating that ITS-HHP analysis is an easy and reproducible additional tool for strain typing.


Applied and Environmental Microbiology | 2010

Oral Bacteria as Potential Probiotics for the Pharyngeal Mucosa

Simone Guglielmetti; Valentina Taverniti; Mario Minuzzo; Stefania Arioli; Milda Stuknyte; Matti Karp; Diego Mora

ABSTRACT The research described here was aimed at the selection of oral bacteria that displayed properties compatible with their potential use as probiotics for the pharyngeal mucosa. We included in the study 56 bacteria newly isolated from the pharynges of healthy donors, which were identified at the intraspecies level and characterized in vitro for their probiotic potential. The experiments led us to select two potential probiotic bacterial strains (Streptococcus salivarius RS1 and ST3) and to compare them with the prototype oral probiotic S. salivarius strain K12. All three strains efficiently bound to FaDu human epithelial pharyngeal cells and thereby antagonized Streptococcus pyogenes adhesion and growth. All were sensitive to a variety of antibiotics routinely used for the control of upper respiratory tract infections. Immunological in vitro testing on a FaDu layer revealed different responses to RS1, ST3, and K12. RS1 and ST3 modulated NF-κB activation and biased proinflammatory cytokines at baseline and after interleukin-1β (IL-1β) induction. In conclusion, we suggest that the selected commensal streptococci represent potential pharyngeal probiotic candidates. They could display a good degree of adaptation to the host and possess potential immunomodulatory and anti-inflammatory properties.


Scientific Reports | 2015

Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut

Christian Milani; Gabriele Andrea Lugli; Sabrina Duranti; Francesca Turroni; Leonardo Mancabelli; Chiara Ferrario; Marta Mangifesta; Arancha Hevia; Alice Viappiani; Matthias Scholz; Stefania Arioli; Borja Sánchez; Jonathan A. Lane; Doyle V. Ward; Rita M. Hickey; Diego Mora; Nicola Segata; Abelardo Margolles; Douwe van Sinderen; Marco Ventura

Bifidobacteria are common and frequently dominant members of the gut microbiota of many animals, including mammals and insects. Carbohydrates are considered key carbon sources for the gut microbiota, imposing strong selective pressure on the complex microbial consortium of the gut. Despite its importance, the genetic traits that facilitate carbohydrate utilization by gut microbiota members are still poorly characterized. Here, genome analyses of 47 representative Bifidobacterium (sub)species revealed the genes predicted to be required for the degradation and internalization of a wide range of carbohydrates, outnumbering those found in many other gut microbiota members. The glycan-degrading abilities of bifidobacteria are believed to reflect available carbon sources in the mammalian gut. Furthermore, transcriptome profiling of bifidobacterial genomes supported the involvement of various chromosomal loci in glycan metabolism. The widespread occurrence of bifidobacterial saccharolytic features is in line with metagenomic and metatranscriptomic datasets obtained from human adult/infant faecal samples, thereby supporting the notion that bifidobacteria expand the human glycobiome. This study also underscores the hypothesis of saccharidic resource sharing among bifidobacteria through species-specific metabolic specialization and cross feeding, thereby forging trophic relationships between members of the gut microbiota.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2005

Conditions affecting cell surface properties of human intestinal bifidobacteria

Enrica Canzi; Simone Guglielmetti; Diego Mora; Isabella Tamagnini; Carlo Parini

The cell surface properties of human intestinal bifidobacteria have been characterized for 30 strains isolated from a fecal sample. Strain identification to the species level was obtained by restriction analysis of the amplified 16S rRNA gene and confirmed by DNA/DNA reassociation experiments. The isolates were grouped in four genetically homogeneous clusters whose members belonged to Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium longum and Bifidobacterium pseudocatenulatum species. Cell surface properties of Bifidobacterium strains were evaluated by determining the level of hydrophobicity, adhesion to hydrocarbons and contact angle measurements, and their autoaggregation ability. The results showed high and homogeneous level of hydrophobicity in all tested strains when contact angle measurements values were considered. On the contrary, autoaggregation assays and bacterial adhesion to hydrocarbons detected interesting differences in cell surface properties among the tested Bifidobacterium strains. The highest levels of autoaggregation, detected in B. bifidum and B. adolescentis strains, were strictly dependent on the pH of the medium. Moreover, protease treatment experiments suggested that proteins had a key role in the autoaggregating ability of B. bifidum and B. adolescentis strains.


International Journal of Systematic and Evolutionary Microbiology | 2009

Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov.

Maria Grazia Fortina; R. Pukall; Peter Schumann; Diego Mora; Carlo Parini; Pier Luigi Manachini; Erko Stackebrandt

A polyphasic taxonomic study was performed on the type strain of Bacillus thermosphaericus DSM 10633T and three related soil isolates. On the basis of phenotypic characteristics, chemotaxonomic profiles and phylogenetic data a new genus, Ureibacillus gen. nov., is proposed for the strains in the Bacillus thermosphaericus cluster. Strains of this cluster fall into two DNA-DNA similarity groups: while one group contains the type strain of Ureibacillus thermosphaericus comb. nov. and a single soil isolate, the other contains two soil isolates. The two groups differed in the composition of isoprenoid quinones and some phenotypic properties. These data support the description of a novel species of Ureibacillus for which the name Ureibacillus terrenus is proposed. The type strain of this new species is TH9AT (= DSM 12654T = LMG 19470T).


Applied and Environmental Microbiology | 2008

Bacterial Cinnamoyl Esterase Activity Screening for the Production of a Novel Functional Food Product

Simone Guglielmetti; Ivano De Noni; Federica Caracciolo; Francesco Molinari; Carlo Parini; Diego Mora

ABSTRACT Lactobacillus helveticus MIMLh5 was selected for its strong cinnamoyl esterase activity on chlorogenic acid and employed for the preparation of a food product containing a high concentration of free caffeic acid. The novel food product was demonstrated to display high total antioxidant power and potential probiotic properties.

Collaboration


Dive into the Diego Mora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Daffonchio

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matti Karp

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge