Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milda Stuknyte is active.

Publication


Featured researches published by Milda Stuknyte.


Applied and Environmental Microbiology | 2010

Oral Bacteria as Potential Probiotics for the Pharyngeal Mucosa

Simone Guglielmetti; Valentina Taverniti; Mario Minuzzo; Stefania Arioli; Milda Stuknyte; Matti Karp; Diego Mora

ABSTRACT The research described here was aimed at the selection of oral bacteria that displayed properties compatible with their potential use as probiotics for the pharyngeal mucosa. We included in the study 56 bacteria newly isolated from the pharynges of healthy donors, which were identified at the intraspecies level and characterized in vitro for their probiotic potential. The experiments led us to select two potential probiotic bacterial strains (Streptococcus salivarius RS1 and ST3) and to compare them with the prototype oral probiotic S. salivarius strain K12. All three strains efficiently bound to FaDu human epithelial pharyngeal cells and thereby antagonized Streptococcus pyogenes adhesion and growth. All were sensitive to a variety of antibiotics routinely used for the control of upper respiratory tract infections. Immunological in vitro testing on a FaDu layer revealed different responses to RS1, ST3, and K12. RS1 and ST3 modulated NF-κB activation and biased proinflammatory cytokines at baseline and after interleukin-1β (IL-1β) induction. In conclusion, we suggest that the selected commensal streptococci represent potential pharyngeal probiotic candidates. They could display a good degree of adaptation to the host and possess potential immunomodulatory and anti-inflammatory properties.


Journal of Nutrition | 2014

Modulation of Fecal Clostridiales Bacteria and Butyrate by Probiotic Intervention with Lactobacillus paracasei DG Varies among Healthy Adults

Chiara Ferrario; Valentina Taverniti; Christian Milani; Walter Fiore; Monica Laureati; Ivano De Noni; Milda Stuknyte; Bessem Chouaia; Patrizia Riso; Simone Guglielmetti

BACKGROUND The modulation of gut microbiota is considered to be the first target to establish probiotic efficacy in a healthy population. OBJECTIVE This study was conducted to determine the impact of a probiotic on the intestinal microbial ecology of healthy volunteers. METHODS High-throughput 16S ribosomal RNA gene sequencing was used to characterize the fecal microbiota in healthy adults (23-55 y old) of both sexes, before and after 4 wk of daily consumption of a capsule containing at least 24 billion viable Lactobacillus paracasei DG cells, according to a randomized, double-blind, crossover placebo-controlled design. RESULTS Probiotic intake induced an increase in Proteobacteria (P = 0.006) and in the Clostridiales genus Coprococcus (P = 0.009), whereas the Clostridiales genus Blautia (P = 0.036) was decreased; a trend of reduction was also observed for Anaerostipes (P = 0.05) and Clostridium (P = 0.06). We also found that the probiotic effect depended on the initial butyrate concentration. In fact, participants with butyrate >100 mmol/kg of wet feces had a mean butyrate reduction of 49 ± 21% and a concomitant decrease in the sum of 6 Clostridiales genera, namely Faecalibacterium, Blautia, Anaerostipes, Pseudobutyrivibrio, Clostridium, and Butyrivibrio (P = 0.021), after the probiotic intervention. In contrast, in participants with initial butyrate concentrations <25 mmol/kg of wet feces, the probiotic contributed to a 329 ± 255% (mean ± SD) increment in butyrate concomitantly with an ∼55% decrease in Ruminococcus (P = 0.016) and a 150% increase in an abundantly represented unclassified Bacteroidales genus (P = 0.05). CONCLUSIONS The intake of L. paracasei DG increased the Blautia:Coprococcus ratio, which, according to the literature, can potentially confer a health benefit on the host. The probiotic impact on the microbiota and on short-chain fatty acids, however, seems to strictly depend on the initial characteristics of the intestinal microbial ecosystem. In particular, fecal butyrate concentrations could represent an important biomarker for identifying subjects who may benefit from probiotic treatment. This trial was registered at www.controlled-trials.com/isrctn as ISRCTN56945491.


Applied and Environmental Microbiology | 2013

S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity.

Valentina Taverniti; Milda Stuknyte; Mario Minuzzo; Stefania Arioli; Ivano De Noni; Christian Scabiosi; Zuzet Martinez Cordova; Ilkka Junttila; Sanna Hämäläinen; Hannu Turpeinen; Diego Mora; Matti Karp; Marko Pesu; Simone Guglielmetti

ABSTRACT The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the hosts defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention.


Infection and Immunity | 2010

A Dairy Bacterium Displays In Vitro Probiotic Properties for the Pharyngeal Mucosa by Antagonizing Group A Streptococci and Modulating the Immune Response

Simone Guglielmetti; Valentina Taverniti; Mario Minuzzo; Stefania Arioli; Ivan Zanoni; Milda Stuknyte; Francesca Granucci; Matti Karp; Diego Mora

ABSTRACT The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1β, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.


Applied and Environmental Microbiology | 2014

Murein Lytic Enzyme TgaA of Bifidobacterium bifidum MIMBb75 Modulates Dendritic Cell Maturation through Its Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase (CHAP) Amidase Domain

Simone Guglielmetti; Ivan Zanoni; Silvia Balzaretti; Matteo Miriani; Valentina Taverniti; Ivano De Noni; Ilaria Presti; Milda Stuknyte; Alessio Scarafoni; Stefania Arioli; Stefania Iametti; Francesco Bonomi; Diego Mora; Matti Karp; Francesca Granucci

ABSTRACT Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the hosts immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75s cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the hosts immune system.


International Journal of Food Microbiology | 2017

Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation

Stefania Arioli; Giulia Della Scala; Maria Chiara Remagni; Milda Stuknyte; Stefano Colombo; Simone Guglielmetti; Ivano De Noni; Enzio Ragg; Diego Mora

The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pHin, L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release.


Folia Microbiologica | 2008

Paenibacillus tylopili sp.nov., a chitinolytic bacterium isolated from the mycorhizosphere of Tylopilus felleus

Nomeda Kuisiene; Juozas Raugalas; Cathrin Spröer; Reiner M. Kroppenstedt; Milda Stuknyte; Donaldas Chitavichius

Two chitinolytic bacterial strains (designated MK2T and V7) were isolated from the mycorhizosphere of the fungus Tylopilus felleus. The strains were facultatively anaerobic G+ endospore formers. Physiological analysis and 16S rRNA gene PCR-RFLP assays revealed nearly identical profiles for both strains, demonstrating their relationship at the species level. Sequences specific for the genus Paenibacillus were found within the 16S rRNA gene sequence of the strain MK2T. The 16S rRNA gene sequence showed the highest similarity to the sequences of Paenibacillus amylolyticus, P. pabuli and P. xylanilyticus. DNA-DNA relatedness of the strain with the type strain of P. amylolyticus was 4.95 %, of P. pabuli 38.0 %, and of P. xylanilyticus 46.3 %, indicating no relatedness between MK2T and any of them at the species level. The most abundant fatty acids in strains MK2T and V7 were anteiso-C15:0, iso-C16:0, iso-C15:0 and n-C16:0. DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses, and phylogenetic data based on 16S rRNA gene sequencing made it possible to describe both strains as the novel species of the genus Paenibacillus, for which the name Paenibacillus tylopili is proposed, the type strain being MK2T (DSM 18927T, LMG 23975T).


New Journal of Chemistry | 2015

Reactivity of decafluorobenzophenone and decafluoroazobenzene towards aromatic diamines: a practical entry to donor–acceptor systems

Paolo Coghi; Antonio Papagni; Riccardo Po; Anna Calabrese; Alessandra Tacca; Alberto Savoini; Milda Stuknyte

A series of Donor–Acceptor–Donor (D–A–D) and Acceptor–Donor–Acceptor (A–D–A) compounds have been prepared exploiting the relative ability of polyfluorinated azobenzenes and benzophenone to undergo aromatic nucleophilic substitution reactions with aromatic amines. A high para-regioselectivity is obtained when fluorene and carbazole-based diamines have been used in a high Donor Number solvent environment such as DMSO. The prepared triads have been employed in the synthesis of oligomers with the aim of evaluating them as photovoltaic material additives in optoelectronic applications.


International Dairy Journal | 2011

Potential immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinases of lactic acid bacteria

Milda Stuknyte; Ivano De Noni; Simone Guglielmetti; Mario Minuzzo; Diego Mora


Fems Microbiology Letters | 2007

Identification of the genus Geobacillus using genus‐specific primers, based on the 16S–23S rRNA gene internal transcribed spacer

Nomeda Kuisiene; Juozas Raugalas; Milda Stuknyte; Donaldas Chitavichius

Collaboration


Dive into the Milda Stuknyte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matti Karp

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Francesca Granucci

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Zanoni

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge