Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Perez-Tilve is active.

Publication


Featured researches published by Diego Perez-Tilve.


Cell Metabolism | 2008

Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin

Miguel López; Ricardo Lage; Asish K. Saha; Diego Perez-Tilve; María J. Vázquez; Luis M. Varela; Susana Sangiao-Alvarellos; Sulay Tovar; Kawtar Raghay; Sergio Rodriguez-Cuenca; Rosangela Deoliveira; Tamara R. Castañeda; Rakesh Datta; Jesse Z. Dong; Michael D. Culler; Mark W. Sleeman; Clara V. Alvarez; Rosalía Gallego; Christopher J. Lelliott; David Carling; Matthias H. Tschöp; Carlos Dieguez; Antonio Vidal-Puig

Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific inhibition of fatty acid biosynthesis induced by AMP-activated protein kinase (AMPK) resulting in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. In addition, we also demonstrate that fasting downregulates fatty acid synthase (FAS) in a region-specific manner and that this effect is mediated by an AMPK and ghrelin-dependent mechanisms. Thus, decreasing AMPK activity in the ventromedial nucleus of the hypothalamus (VMH) is sufficient to inhibit ghrelins effects on FAS expression and feeding. Overall, our results indicate that modulation of hypothalamic fatty acid metabolism specifically in the VMH in response to ghrelin is a physiological mechanism that controls feeding.


Journal of Clinical Investigation | 2006

Ghrelin action in the brain controls adipocyte metabolism

Claudia Theander-Carrillo; Petra Wiedmer; Philippe Cettour-Rose; Ruben Nogueiras; Diego Perez-Tilve; Paul T. Pfluger; Tamara R. Castañeda; Patrick Muzzin; Annette Schürmann; Ildiko Szanto; Matthias H. Tschöp; Françoise Rohner-Jeanrenaud

Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage-promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase alpha, fatty acid synthase, and stearoyl-CoA desaturase-1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase-1alpha, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.


Journal of Clinical Investigation | 2007

The central melanocortin system directly controls peripheral lipid metabolism

Ruben Nogueiras; Petra Wiedmer; Diego Perez-Tilve; Christelle Veyrat-Durebex; Julia M. Keogh; Gregory M. Sutton; Paul T. Pfluger; Tamara R. Castañeda; Susanne Neschen; Susanna M. Hofmann; Philip N. Howles; Donald A. Morgan; Stephen C. Benoit; Ildiko Szanto; Brigitte Schrott; Annette Schürmann; Hans-Georg Joost; Craig Hammond; David Y. Hui; Stephen C. Woods; Kamal Rahmouni; Andrew A. Butler; I. Sadaf Farooqi; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Nature Chemical Biology | 2009

A new glucagon and GLP-1 co-agonist eliminates obesity in rodents

Jonathan Day; Nickki Ottaway; James T. Patterson; Vasily Gelfanov; David L. Smiley; Jas Gidda; Hannes M. Findeisen; Dennis Bruemmer; Daniel J. Drucker; Nilika Chaudhary; Jenna Holland; Jazzminn Hembree; William Abplanalp; Erin Grant; Jennifer Ruehl; Hilary Wilson; Henriette Kirchner; Sarah Kathleen Haas Lockie; Susanna M. Hofmann; Stephen C. Woods; Ruben Nogueiras; Paul T. Pfluger; Diego Perez-Tilve; Richard D. DiMarchi; Matthias H. Tschöp

We report the efficacy of a new peptide with agonism at the glucagon and GLP-1 receptors that has potent, sustained satiation-inducing and lipolytic effects. Selective chemical modification to glucagon resulted in a loss of specificity, with minimal change to inherent activity. The structural basis for the co-agonism appears to be a combination of local positional interactions and a change in secondary structure. Two co-agonist peptides differing from each other only in their level of glucagon receptor agonism were studied in rodent obesity models. Administration of PEGylated peptides once per week normalized adiposity and glucose tolerance in diet-induced obese mice. Reduction of body weight was achieved by a loss of body fat resulting from decreased food intake and increased energy expenditure. These preclinical studies indicate that when full GLP-1 agonism is augmented with an appropriate degree of glucagon receptor activation, body fat reduction can be substantially enhanced without any overt adverse effects.


Journal of Clinical Investigation | 2007

Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice

Takashi Nomiyama; Diego Perez-Tilve; Daisuke Ogawa; Florence Gizard; Yue Zhao; Elizabeth B. Heywood; Karrie L. Jones; Ryuzo Kawamori; Lisa A. Cassis; Matthias H. Tschöp; Dennis Bruemmer

Obesity is associated with a state of chronic, low-grade inflammation characterized by abnormal cytokine production and macrophage infiltration into adipose tissue, which may contribute to the development of insulin resistance. During immune responses, tissue infiltration by macrophages is dependent on the expression of osteopontin, an extracellular matrix protein and proinflammatory cytokine that promotes monocyte chemotaxis and cell motility. In the present study, we used a murine model of diet-induced obesity to examine the role of osteopontin in the accumulation of adipose tissue macrophages and the development of insulin resistance during obesity. Mice exposed to a high-fat diet exhibited increased plasma osteopontin levels, with elevated expression in macrophages recruited into adipose tissue. Obese mice lacking osteopontin displayed improved insulin sensitivity in the absence of an effect on diet-induced obesity, body composition, or energy expenditure. These mice further demonstrated decreased macrophage infiltration into adipose tissue, which may reflect both impaired macrophage motility and attenuated monocyte recruitment by stromal vascular cells. Finally, obese osteopontin-deficient mice exhibited decreased markers of inflammation, both in adipose tissue and systemically. Taken together, these results suggest that osteopontin may play a key role in linking obesity to the development of insulin resistance by promoting inflammation and the accumulation of macrophages in adipose tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity.

Tamas L. Horvath; Beatrix Sarman; Cristina García-Cáceres; Pablo J. Enriori; Peter Sotonyi; Marya Shanabrough; Erzsebet Borok; Jesús Argente; Julie A. Chowen; Diego Perez-Tilve; Paul T. Pfluger; Hella S. Brönneke; Barry E. Levin; Sabrina Diano; Michael A. Cowley; Matthias H. Tschöp

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.


Science Translational Medicine | 2013

Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans

Brian Finan; Tao Ma; Nickki Ottaway; Timo D. Müller; Kirk M. Habegger; Kristy M. Heppner; Henriette Kirchner; Jenna Holland; Jazzminn Hembree; Christine Raver; Sarah Kathleen Haas Lockie; David L. Smiley; Vasily Gelfanov; Bin Yang; Susanna M. Hofmann; Dennis Bruemmer; Daniel J. Drucker; Paul T. Pfluger; Diego Perez-Tilve; Jaswant Gidda; Louis Vignati; Lianshan Zhang; Jonathan Hauptman; Michele Lau; Mathieu Brecheisen; Sabine Uhles; William Riboulet; Emmanuelle Hainaut; Elena Sebokova; Karin Conde-Knape

Compared to best-in-class GLP-1 mono-agonists, unimolecular co-agonists of GLP-1 and GIP with optimized pharmacokinetics enhance glycemic and metabolic benefits in mammals. “Twincretins”: Two Is Better than One Despite obesity-linked diabetes approaching worldwide epidemic proportions and the growing recognition of it as a global health challenge, safe and effective medicines have remained largely elusive. Pharmacological options targeting multiple obesity and diabetes signaling pathways offer greater therapeutic potential compared to molecules targeting a single pathway. Finan et al. now report the discovery, characterization, and translational efficacy of a single molecule that acts equally on the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In rodent models of obesity and diabetes, this dual incretin co-agonist more effectively lowered body fat and corrected hyperglycemia than selective mono-agonists for the GLP-1 and GIP receptors. An enhanced insulinotropic effect translated from rodents to monkeys and humans, with substantially improved levels of glycosylated hemoglobin A1c (HbA1c) in humans with type 2 diabetes. The dual incretin was engineered with selective chemical modifications to enhance pharmacokinetics. This, in combination with its inherent mixed agonism, lowered the drug dose and ameliorated the dose-limiting nausea that has plagued selective GLP-1 therapies. These dual incretin co-agonists signify a new direction for unimolecular combination therapy and represent a new class of drug candidates for the treatment of metabolic diseases. We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1–mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1–based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance.


Nature Medicine | 2015

A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents

Brian Finan; Bin Yang; Nickki Ottaway; David L. Smiley; Tao Ma; Christoffer Clemmensen; Joe Chabenne; Lianshan Zhang; Kirk M. Habegger; Katrin Fischer; Jonathan E. Campbell; Darleen A. Sandoval; Randy J. Seeley; Konrad Bleicher; Sabine Uhles; William Riboulet; Jürgen Funk; Cornelia Hertel; Sara Belli; Elena Sebokova; Karin Conde-Knape; Anish Konkar; Daniel J. Drucker; Vasily Gelfanov; Paul T. Pfluger; Timo D. Müller; Diego Perez-Tilve; Richard D. DiMarchi; Matthias H. Tschöp

We report the discovery of a new monomeric peptide that reduces body weight and diabetic complications in rodent models of obesity by acting as an agonist at three key metabolically-related peptide hormone receptors: glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon receptors. This triple agonist demonstrates supraphysiological potency and equally aligned constituent activities at each receptor, all without cross-reactivity at other related receptors. Such balanced unimolecular triple agonism proved superior to any existing dual coagonists and best-in-class monoagonists to reduce body weight, enhance glycemic control and reverse hepatic steatosis in relevant rodent models. Various loss-of-function models, including genetic knockout, pharmacological blockade and selective chemical knockout, confirmed contributions of each constituent activity in vivo. We demonstrate that these individual constituent activities harmonize to govern the overall metabolic efficacy, which predominantly results from synergistic glucagon action to increase energy expenditure, GLP-1 action to reduce caloric intake and improve glucose control, and GIP action to potentiate the incretin effect and buffer against the diabetogenic effect of inherent glucagon activity. These preclinical studies suggest that, so far, this unimolecular, polypharmaceutical strategy has potential to be the most effective pharmacological approach to reversing obesity and related metabolic disorders.


Diabetes | 2013

Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency

Hilary E. Wilson-Pérez; Adam P. Chambers; Karen K. Ryan; Bailing Li; Darleen A. Sandoval; Doris A. Stoffers; Daniel J. Drucker; Diego Perez-Tilve; Randy J. Seeley

Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptor–deficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery.


Nature Medicine | 2012

Targeted estrogen delivery reverses the metabolic syndrome

Brian Finan; Bin Yang; Nickki Ottaway; Kerstin Stemmer; Timo D. Müller; Chun Xia Yi; Kirk M. Habegger; Sonja C. Schriever; Cristina García-Cáceres; Dhiraj G. Kabra; Jazzminn Hembree; Jenna Holland; Christine Raver; Randy J. Seeley; Wolfgang Hans; Martin Irmler; Johannes Beckers; Martin Hrabě de Angelis; Joseph P. Tiano; Franck Mauvais-Jarvis; Diego Perez-Tilve; Paul T. Pfluger; Lianshan Zhang; Vasily Gelfanov; Richard D. DiMarchi; Matthias H. Tschöp

We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases.

Collaboration


Dive into the Diego Perez-Tilve's collaboration.

Top Co-Authors

Avatar

Kirk M. Habegger

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Richard D. DiMarchi

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Nickki Ottaway

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruben Nogueiras

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Jenna Holland

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randy J. Seeley

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Smiley

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge