Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Smiley is active.

Publication


Featured researches published by David L. Smiley.


Nature | 2000

Ghrelin induces adiposity in rodents

Matthias H. Tschöp; David L. Smiley; Mark L. Heiman

The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus. Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem. Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance. Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight. Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion. We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary.


Nature Chemical Biology | 2009

A new glucagon and GLP-1 co-agonist eliminates obesity in rodents

Jonathan Day; Nickki Ottaway; James T. Patterson; Vasily Gelfanov; David L. Smiley; Jas Gidda; Hannes M. Findeisen; Dennis Bruemmer; Daniel J. Drucker; Nilika Chaudhary; Jenna Holland; Jazzminn Hembree; William Abplanalp; Erin Grant; Jennifer Ruehl; Hilary Wilson; Henriette Kirchner; Sarah Kathleen Haas Lockie; Susanna M. Hofmann; Stephen C. Woods; Ruben Nogueiras; Paul T. Pfluger; Diego Perez-Tilve; Richard D. DiMarchi; Matthias H. Tschöp

We report the efficacy of a new peptide with agonism at the glucagon and GLP-1 receptors that has potent, sustained satiation-inducing and lipolytic effects. Selective chemical modification to glucagon resulted in a loss of specificity, with minimal change to inherent activity. The structural basis for the co-agonism appears to be a combination of local positional interactions and a change in secondary structure. Two co-agonist peptides differing from each other only in their level of glucagon receptor agonism were studied in rodent obesity models. Administration of PEGylated peptides once per week normalized adiposity and glucose tolerance in diet-induced obese mice. Reduction of body weight was achieved by a loss of body fat resulting from decreased food intake and increased energy expenditure. These preclinical studies indicate that when full GLP-1 agonism is augmented with an appropriate degree of glucagon receptor activation, body fat reduction can be substantially enhanced without any overt adverse effects.


Science Translational Medicine | 2013

Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans

Brian Finan; Tao Ma; Nickki Ottaway; Timo D. Müller; Kirk M. Habegger; Kristy M. Heppner; Henriette Kirchner; Jenna Holland; Jazzminn Hembree; Christine Raver; Sarah Kathleen Haas Lockie; David L. Smiley; Vasily Gelfanov; Bin Yang; Susanna M. Hofmann; Dennis Bruemmer; Daniel J. Drucker; Paul T. Pfluger; Diego Perez-Tilve; Jaswant Gidda; Louis Vignati; Lianshan Zhang; Jonathan Hauptman; Michele Lau; Mathieu Brecheisen; Sabine Uhles; William Riboulet; Emmanuelle Hainaut; Elena Sebokova; Karin Conde-Knape

Compared to best-in-class GLP-1 mono-agonists, unimolecular co-agonists of GLP-1 and GIP with optimized pharmacokinetics enhance glycemic and metabolic benefits in mammals. “Twincretins”: Two Is Better than One Despite obesity-linked diabetes approaching worldwide epidemic proportions and the growing recognition of it as a global health challenge, safe and effective medicines have remained largely elusive. Pharmacological options targeting multiple obesity and diabetes signaling pathways offer greater therapeutic potential compared to molecules targeting a single pathway. Finan et al. now report the discovery, characterization, and translational efficacy of a single molecule that acts equally on the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In rodent models of obesity and diabetes, this dual incretin co-agonist more effectively lowered body fat and corrected hyperglycemia than selective mono-agonists for the GLP-1 and GIP receptors. An enhanced insulinotropic effect translated from rodents to monkeys and humans, with substantially improved levels of glycosylated hemoglobin A1c (HbA1c) in humans with type 2 diabetes. The dual incretin was engineered with selective chemical modifications to enhance pharmacokinetics. This, in combination with its inherent mixed agonism, lowered the drug dose and ameliorated the dose-limiting nausea that has plagued selective GLP-1 therapies. These dual incretin co-agonists signify a new direction for unimolecular combination therapy and represent a new class of drug candidates for the treatment of metabolic diseases. We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1–mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1–based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance.


Nature Medicine | 2015

A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents

Brian Finan; Bin Yang; Nickki Ottaway; David L. Smiley; Tao Ma; Christoffer Clemmensen; Joe Chabenne; Lianshan Zhang; Kirk M. Habegger; Katrin Fischer; Jonathan E. Campbell; Darleen A. Sandoval; Randy J. Seeley; Konrad Bleicher; Sabine Uhles; William Riboulet; Jürgen Funk; Cornelia Hertel; Sara Belli; Elena Sebokova; Karin Conde-Knape; Anish Konkar; Daniel J. Drucker; Vasily Gelfanov; Paul T. Pfluger; Timo D. Müller; Diego Perez-Tilve; Richard D. DiMarchi; Matthias H. Tschöp

We report the discovery of a new monomeric peptide that reduces body weight and diabetic complications in rodent models of obesity by acting as an agonist at three key metabolically-related peptide hormone receptors: glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon receptors. This triple agonist demonstrates supraphysiological potency and equally aligned constituent activities at each receptor, all without cross-reactivity at other related receptors. Such balanced unimolecular triple agonism proved superior to any existing dual coagonists and best-in-class monoagonists to reduce body weight, enhance glycemic control and reverse hepatic steatosis in relevant rodent models. Various loss-of-function models, including genetic knockout, pharmacological blockade and selective chemical knockout, confirmed contributions of each constituent activity in vivo. We demonstrate that these individual constituent activities harmonize to govern the overall metabolic efficacy, which predominantly results from synergistic glucagon action to increase energy expenditure, GLP-1 action to reduce caloric intake and improve glucose control, and GIP action to potentiate the incretin effect and buffer against the diabetogenic effect of inherent glucagon activity. These preclinical studies suggest that, so far, this unimolecular, polypharmaceutical strategy has potential to be the most effective pharmacological approach to reversing obesity and related metabolic disorders.


Diabetes | 2013

Fibroblast Growth Factor 21 Mediates Specific Glucagon Actions

Kirk M. Habegger; Kerstin Stemmer; Christine C. Cheng; Timo D. Müller; Kristy M. Heppner; Nickki Ottaway; Jenna Holland; Jazzminn Hembree; David L. Smiley; Vasily Gelfanov; Radha Krishna; Ayman M. Arafat; Anish Konkar; Sara Belli; Martin Kapps; Stephen C. Woods; Susanna M. Hofmann; David A. D’Alessio; Paul T. Pfluger; Diego Perez-Tilve; Randy J. Seeley; Morichika Konishi; Nobuyujki Itoh; Alexei Kharitonenkov; Joachim Spranger; Richard D. DiMarchi; Matthias H. Tschöp

Glucagon, an essential regulator of glucose homeostasis, also modulates lipid metabolism and promotes weight loss, as reflected by the wasting observed in glucagonoma patients. Recently, coagonist peptides that include glucagon agonism have emerged as promising therapeutic candidates for the treatment of obesity and diabetes. We developed a novel stable and soluble glucagon receptor (GcgR) agonist, which allowed for in vivo dissection of glucagon action. As expected, chronic GcgR agonism in mice resulted in hyperglycemia and lower body fat and plasma cholesterol. Notably, GcgR activation also raised hepatic expression and circulating levels of fibroblast growth factor 21 (FGF21). This effect was retained in isolated primary hepatocytes from wild-type (WT) mice, but not GcgR knockout mice. We confirmed this link in healthy human volunteers, where injection of natural glucagon increased plasma FGF21 within hours. Functional relevance was evidenced in mice with genetic deletion of FGF21, where GcgR activation failed to induce the body weight loss and lipid metabolism changes observed in WT mice. Taken together, these data reveal for the first time that glucagon controls glucose, energy, and lipid metabolism at least in part via FGF21-dependent pathways.


Pharmacology, Biochemistry and Behavior | 2002

Neuropeptide Y-Y2 receptors mediate anxiety in the amygdala.

Tammy J. Sajdyk; Douglas A. Schober; David L. Smiley; Donald R. Gehlert

The behavioral effects of direct injection of the neuropeptide Y (NPY) Y2 receptor agonist C2-NPY into the basolateral nucleus of the amygdala (BLA) was assessed in rats utilizing the social interaction test (SI). C2-NPY decreased SI time in a dose-dependent manner with a significant change observed at a dose of 80 pmol/100 nl. The anxiogenic effects produced by intra-amygdalar C2-NPY injections were reversed with intraperitoneal administration of alprazolam (1 mg/kg), a known anxiolytic. These findings support the hypothesis that Y2 receptors are involved in the regulation of the anxiety response.


The FASEB Journal | 2011

Ghrelin-induced adiposity is independent of orexigenic effects

Diego Perez-Tilve; Kristy M. Heppner; Henriette Kirchner; Sarah Kathleen Haas Lockie; Stephen C. Woods; David L. Smiley; Matthias H. Tschöp; Paul T. Pfluger

Ghrelin is a hormone produced predominantly by the stomach that targets a number of specific areas in the central nervous system to promote a positive energy balance by increasing food intake and energy storage. In that respect, similarities exist with the effects of consuming a high‐fat diet (HFD), which also increases caloric intake and the amount of stored calories. We determined whether the effects of ghrelin on feeding and adiposity are influenced by the exposure to an HFD. Chronic intracerebroventricular ghrelin (2.5 nmol/d) increased feeding in lean rats fed a low‐fat control diet (CD) [192±5 g (ghrelin+CD) vs. 152±5 g (control i.c.v. saline+CD), P<0.001], but the combination of ghrelin plus HFD did not result in significantly greater hyperphagia [150±7 g (ghrelin+HFD) vs. 136±4 g (saline+HFD)]. Despite failing to increase food intake in rats fed the HFD, ghrelin nonetheless increased adiposity [fat mass increase of 14±2 g (ghrelin+HFD) vs. 1±1 g (saline+HFD), P<0.001] up‐regulating the gene expression of lipogenic enzymes in white adipose tissue. Our findings demonstrate that factors associated with high‐fat feeding functionally interact with pathways regulating the effect of ghrelin on food intake. We conclude that ghrelins central effects on nutrient intake and nutrient partitioning can be separated and suggest an opportunity to identify respective independent neuronal pathways.— Perez‐Tilve, D., Heppner, K., Kirchner, H., Lockie, S. H., Woods, S. C., Smiley, D. L., Tschöp, M., and Pfluger, P. Ghrelin‐induced adiposity is independent of orexigenic effects. FASEB J. 25, 2814‐2822 (2011). www.fasebj.org


Biopolymers | 2012

Optimization of co‐agonism at GLP‐1 and glucagon receptors to safely maximize weight reduction in DIO‐rodents

Jonathan Day; Vasily Gelfanov; David L. Smiley; Paul E. Carrington; George J. Eiermann; Gary G. Chicchi; Mark D. Erion; Jas Gidda; Nancy A. Thornberry; Matthias H. Tschöp; Donald J. Marsh; Ranabir SinhaRoy; Richard D. DiMarchi; Alessandro Pocai

The ratio of GLP‐1/glucagon receptor (GLP1R/GCGR) co‐agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet‐induced obese (DIO) mice chronically treated with GLP1R/GCGR co‐agonist peptides differing in their relative receptor agonism. Using glucagon‐based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP‐1 sequences, C‐terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N‐terminal dipeptide. In addition to α‐amino‐isobutyric acid (Aib) substitution at position two, we show that α,α′‐dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site‐specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co‐agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co‐agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co‐agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.


Peptides | 1998

The Neuropeptide Y Y1 Antagonist, 1229U91, A Potent Agonist for the Human Pancreatic Polypeptide-Preferring (NPY Y4) Receptor

Douglas A. Schober; Anne M. Van Abbema; David L. Smiley; Robert F. Bruns; Donald R. Gehlert

Recently, a novel high-affinity peptide antagonist, 1229U91, was published as a selective neuropeptide Y Y1 antagonist. The selectivity of 1229U91 was evaluated in the human NPY Y1 receptor containing cell line, SK-N-MC, and cells containing the cloned human NPY Y2, the pancreatic polypeptide-preferring (NPY Y4), and the NPY Y5 receptors. 1229U91 potently displaced [125I]-peptide YY (PYY) binding to human NPY Y1 receptors (IC50 = 0.245+/-0.004 nM, n = 4). but displayed little affinity for the human NPY Y2 and Y5 receptors (IC50 > 1000 nM). Interestingly, 1229U91 displaced [125I]-PYY with even greater affinity at the human NPY Y4 receptor (IC50 = 0.081+/-0.009 nM, n = 4). Using a cyclic AMP accumulation assay, 1229U91 blocked NPY inhibition of forskolin-induced adenylate cyclase activity in NPY Y1 receptor containing SK-N-MC cells. In the human NPY Y4 receptor expressing cell line, 1229U91 did not block pancreatic polypeptide (PP) inhibition of forskolin stimulated adenylate cyclase. However, in the absence of PP, 1229U91 was able to inhibit forskolin stimulated cyclic AMP accumulation (IC50 = 7.16+/-2.8 nM, n = 4). We conclude that 1229U91 binds non-selectively with high affinity to both human NPY Y1 and Y4 receptors. Furthermore, 1229U91 displays antagonist activity at the NPY Y1 receptor, while having agonist activity at the NPY Y4 receptor.


Diabetes | 2014

Both Acyl and Des-Acyl Ghrelin Regulate Adiposity and Glucose Metabolism via Central Nervous System Ghrelin Receptors

Kristy M. Heppner; Carolin L. Piechowski; Anne Müller; Nickki Ottaway; Stephanie Sisley; David L. Smiley; Kirk M. Habegger; Paul T. Pfluger; Richard D. DiMarchi; Heike Biebermann; Matthias H. Tschöp; Darleen A. Sandoval; Diego Perez-Tilve

Growth hormone secretagogue receptors (GHSRs) in the central nervous system (CNS) mediate hyperphagia and adiposity induced by acyl ghrelin (AG). Evidence suggests that des-AG (dAG) has biological activity through GHSR-independent mechanisms. We combined in vitro and in vivo approaches to test possible GHSR-mediated biological activity of dAG. Both AG (100 nmol/L) and dAG (100 nmol/L) significantly increased inositol triphosphate formation in human embryonic kidney-293 cells transfected with human GHSR. As expected, intracerebroventricular infusion of AG in mice increased fat mass (FM), in comparison with the saline-infused controls. Intracerebroventricular dAG also increased FM at the highest dose tested (5 nmol/day). Chronic intracerebroventricular infusion of AG or dAG increased glucose-stimulated insulin secretion (GSIS). Subcutaneously infused AG regulated FM and GSIS in comparison with saline-infused control mice, whereas dAG failed to regulate these parameters even with doses that were efficacious when delivered intracerebroventricularly. Furthermore, intracerebroventricular dAG failed to regulate FM and induce hyperinsulinemia in GHSR-deficient (Ghsr−/−) mice. In addition, a hyperinsulinemic-euglycemic clamp suggests that intracerebroventricular dAG impairs glucose clearance without affecting endogenous glucose production. Together, these data demonstrate that dAG is an agonist of GHSR and regulates body adiposity and peripheral glucose metabolism through a CNS GHSR-dependent mechanism.

Collaboration


Dive into the David L. Smiley's collaboration.

Top Co-Authors

Avatar

Richard D. DiMarchi

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Day

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Dimarchi

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James T. Patterson

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge