Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dierk Wanke is active.

Publication


Featured researches published by Dierk Wanke.


BMC Genomics | 2008

Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots

Elke Mangelsen; Joachim Kilian; Kenneth W. Berendzen; Uener H Kolukisaoglu; Klaus Harter; Christer Jansson; Dierk Wanke

BackgroundWRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far as regulators in sucrose signaling, pathogen defense, and in response to cold and drought. However, their phylogenetic relationship remained unresolved.ResultsIn this study, we used available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features, the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs.ConclusionHvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in monocot and dicot species.


Plant Methods | 2010

DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro

Luise H. Brand; Tobias Kirchler; Sabine Hummel; Christina Chaban; Dierk Wanke

BackgroundAbout 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences.ResultsWe provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI)-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of At bZIP63 to the C-box and At WRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of At WRKY33, At WRKY50 and At WRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to At BPC2, a member of the so far uncharacterised plant specific B asic P entac ysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined.ConclusionsWe successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA sequence can be performed via this method. The DPI-ELISA is cost efficient, less time-consuming than other methods and provides a qualitative and quantitative readout. The presented DPI-ELISA protocol is accompanied by advice on trouble-shooting, which will enable scientists to rapidly establish this versatile and easy to use method in their laboratories.


Nucleic Acids Research | 2013

Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

Luise H. Brand; Nina M. Fischer; Klaus Harter; Oliver Kohlbacher; Dierk Wanke

WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function.


Plant Journal | 2012

Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function

Katrin Wenke; Dierk Wanke; Joachim Kilian; Kenneth W. Berendzen; Klaus Harter; Birgit Piechulla

Interactions with the (a)biotic environment play key roles in a plants fitness and vitality. In addition to direct surface-to-surface contact, volatile chemicals can also affect the physiology of organism. Volatiles of Serratia plymuthica and Stenotrophomonas maltophilia significantly inhibited growth and induced H(2) O(2) production in Arabidopsis in dual culture. Within 1 day, transcriptional changes were observed by promoter-GUS assays using a stress-inducible W-box-containing 4xGST1 construct. Expression studies performed at 6, 12 and 24 h revealed altered transcript levels for 889 genes and 655 genes in response to Se. plymuthica or St. maltophilia volatiles, respectively. Expression of 162 genes was altered in both treatments. Meta-analysis revealed that specifically volatile-responsive genes were significantly overlapping with those affected by abiotic stress. We use the term mVAMP (microbial volatile-associated molecular pattern) to describe these volatile-specific responses. Genes responsive to both treatments were enriched for W-box motifs in their promoters, and were significantly enriched for transcription factors (ERF2, ZAT10, MYB73 and WRKY18). The susceptibility of wrky18 mutant lines to volatiles was significantly delayed, suggesting an indispensable role for WRKY18 in bacterial volatile responses.


BMC Bioinformatics | 2006

Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves

Kenneth W. Berendzen; Kurt Stüber; Klaus Harter; Dierk Wanke

BackgroundThe discovery of cis-regulatory motifs still remains a challenging task even though the number of sequenced genomes is constantly growing. Computational analyses using pattern search algorithms have been valuable in phylogenetic footprinting approaches as have expression profile experiments to predict co-occurring motifs. Surprisingly little is known about the nature of cis-regulatory element (CRE) distribution in promoters.ResultsIn this paper we used the Motif Mapper open-source collection of visual basic scripts for the analysis of motifs in any aligned set of DNA sequences. We focused on promoter motif distribution curves to identify positional over-representation of DNA motifs. Using differentially aligned datasets from the model species Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae, we convincingly demonstrated the importance of the position and orientation for motif discovery. Analysis with known CREs and all possible hexanucleotides showed that some functional elements gather close to the transcription and translation initiation sites and that elements other than the TATA-box motif are conserved between eukaryote promoters. While a high background frequency usually decreases the effectiveness of such an enumerative investigation, we improved our analysis by conducting motif distribution maps using large datasets.ConclusionThis is the first study to reveal positional over-representation of CREs and promoter motifs in a cross-species approach. CREs and motifs shared between eukaryotic promoters support the observation that an eukaryotic promoter structure has been conserved throughout evolutionary time. Furthermore, with the information on positional enrichment of a motif or a known functional CRE, it is possible to get a more detailed insight into where an element appears to function. This in turn might accelerate the in depth examination of known and yet unknown cis-regulatory sequences in the laboratory.


BMC Bioinformatics | 2007

EDISA: extracting biclusters from multiple time-series of gene expression profiles

Jochen Supper; Martin Strauch; Dierk Wanke; Klaus Harter; Andreas Zell

BackgroundCells dynamically adapt their gene expression patterns in response to various stimuli. This response is orchestrated into a number of gene expression modules consisting of co-regulated genes. A growing pool of publicly available microarray datasets allows the identification of modules by monitoring expression changes over time. These time-series datasets can be searched for gene expression modules by one of the many clustering methods published to date. For an integrative analysis, several time-series datasets can be joined into a three-dimensional gene-condition-time dataset, to which standard clustering or biclustering methods are, however, not applicable. We thus devise a probabilistic clustering algorithm for gene-condition-time datasets.ResultsIn this work, we present the EDISA (Extended Dimension Iterative Signature Algorithm), a novel probabilistic clustering approach for 3D gene-condition-time datasets. Based on mathematical definitions of gene expression modules, the EDISA samples initial modules from the dataset which are then refined by removing genes and conditions until they comply with the module definition. A subsequent extension step ensures gene and condition maximality. We applied the algorithm to a synthetic dataset and were able to successfully recover the implanted modules over a range of background noise intensities. Analysis of microarray datasets has lead us to define three biologically relevant module types: 1) We found modules with independent response profiles to be the most prevalent ones. These modules comprise genes which are co-regulated under several conditions, yet with a different response pattern under each condition. 2) Coherent modules with similar responses under all conditions occurred frequently, too, and were often contained within these modules. 3) A third module type, which covers a response specific to a single condition was also detected, but rarely. All of these modules are essentially different types of biclusters.ConclusionWe successfully applied the EDISA to different 3D datasets. While previous studies were mostly aimed at detecting coherent modules only, our results show that coherent responses are often part of a more general module type with independent response profiles under different conditions. Our approach thus allows for a more comprehensive view of the gene expression response. After subsequent analysis of the resulting modules, the EDISA helped to shed light on the global organization of transcriptional control. An implementation of the algorithm is available at http://www-ra.informatik.uni-tuebingen.de/software/IAGEN/.


Plant Journal | 2012

The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LCHB1 chlorophyll a/ b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings

Sandra K. Tanz; Joachim Kilian; Christoffer Johnsson; Klaus Apel; Ian Small; Klaus Harter; Dierk Wanke; Barry J. Pogson; Verónica Albrecht

The process of chloroplast biogenesis requires a multitude of pathways and processes to establish chloroplast function. In cotyledons of seedlings, chloroplasts develop either directly from proplastids (also named eoplasts) or, if germinated in the dark, via etioplasts, whereas in leaves chloroplasts derive from proplastids in the apical meristem and are then multiplied by division. The snowy cotyledon 2, sco2, mutations specifically disrupt chloroplast biogenesis in cotyledons. SCO2 encodes a chloroplast-localized protein disulphide isomerase, hypothesized to be involved in protein folding. Analysis of co-expressed genes with SCO2 revealed that genes with similar expression patterns encode chloroplast proteins involved in protein translation and in chlorophyll biosynthesis. Indeed, sco2-1 accumulates increased levels of the chlorophyll precursor, protochlorophyllide, in both dark grown cotyledons and leaves. Yeast two-hybrid analyses demonstrated that SCO2 directly interacts with the chlorophyll-binding LHCB1 proteins, being confirmed in planta using bimolecular fluorescence complementation (BIFC). Furthermore, ultrastructural analysis of sco2-1 chloroplasts revealed that formation and movement of transport vesicles from the inner envelope to the thylakoids is perturbed. SCO2 does not interact with the signal recognition particle proteins SRP54 and FtsY, which were shown to be involved in targeting of LHCB1 to the thylakoids. We hypothesize that SCO2 provides an alternative targeting pathway for light-harvesting chlorophyll binding (LHCB) proteins to the thylakoids via transport vesicles predominantly in cotyledons, with the signal recognition particle (SRP) pathway predominant in rosette leaves. Therefore, we propose that SCO2 is involved in the integration of LHCB1 proteins into the thylakoids that feeds back on the regulation of the tetrapyrrole biosynthetic pathway and nuclear gene expression.


Plant Biology | 2010

An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions?

Dierk Wanke; H. Üner Kolukisaoglu

The ABCC subfamily of the ATP binding cassette (ABC) transporters, which were formerly known as multidrug resistance-related proteins (MRPs), consists of closely related members found in all eukaryotic organisms. Although more than a decade of intensive research has elapsed since the first MRP protein was functionally characterised in Arabidopsis thaliana, knowledge of this particular transporter family is still limited in plants. Although ABCC proteins were originally defined as vacuolar pumps of glutathione-S (GS) conjugates, evidence, as well as speculation, on their endogenous functions inside the cell ranges from detoxification and heavy metal sequestration, to chlorophyll catabolite transport and ion channel regulation. The characterisation of knockout mutants in Arabidopsis has been pivotal for elucidation of different roles of ABCC transporters. However, a functional annotation for the majority of these transport proteins is still lacking, even in this model plant. On the one hand, this problem seems to be caused by functional redundancy between family members, which might lead to physiological complementation by a highly homologous gene in the mutant lines. On the other hand, there is growing evidence that the functional diversity of ABCC genes in Arabidopsis and other plants is far greater than previously assumed. For example, analysis of microarray expression data supports involvement of ABCC transporters in the response to biotic stress: particular changes in ABCC transcript levels are found, which are pathogen-specific and evoke distinct signalling cascades. Current knowledge about plant ABCC transporters indicates that novel and unexpected functions and substrates of these proteins are still waiting to be elucidated.


Plant Physiology | 2015

The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs

Andreas Hecker; Luise H. Brand; Sébastien Peter; Nathalie Simoncello; Joachim Kilian; Klaus Harter; Valérie Gaudin; Dierk Wanke

A transcription factor forms a scaffold for Polycomb complex members at specific DNA motifs to control homeotic gene expression. Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein BASIC PENTACYSTEINE6 (BPC6) interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a PRC1 component, and associates with VERNALIZATION2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution.


BMC Plant Biology | 2012

Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription

Kenneth W. Berendzen; Christoph Weiste; Dierk Wanke; Joachim Kilian; Klaus Harter; Wolfgang Dröge-Laser

BackgroundIn higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs) that bind Auxin Response Elements (AuxREs), also members of the bZIP- and MYB-transcription factor (TF) families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs) or Myb Response Elements (MREs), respectively.ResultsApplying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana) and monocot (Oryza sativa) model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE) and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription.ConclusionsUsing genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.

Collaboration


Dive into the Dierk Wanke's collaboration.

Top Co-Authors

Avatar

Klaus Harter

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Zell

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Supper

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Elke Mangelsen

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christer Jansson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Achim Hahn

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge