Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dietmar Geiger is active.

Publication


Featured researches published by Dietmar Geiger.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair

Dietmar Geiger; Sönke Scherzer; Patrick Mumm; Annette Stange; Irene Marten; Hubert Bauer; Peter Ache; Susanne Matschi; Anja Liese; Khaled A. S. Al-Rasheid; Tina Romeis; Rainer Hedrich

In response to drought stress the phytohormone ABA (abscisic acid) induces stomatal closure and, therein, activates guard cell anion channels in a calcium-dependent as well as-independent manner. Two key components of the ABA signaling pathway are the protein kinase OST1 (open stomata 1) and the protein phosphatase ABI1 (ABA insensitive 1). The recently identified guard cell anion channel SLAC1 appeared to be the key ion channel in this signaling pathway but remained electrically silent when expressed heterologously. Using split YFP assays, we identified OST1 as an interaction partner of SLAC1 and ABI1. Upon coexpression of SLAC1 with OST1 in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Integration of ABI1 into the SLAC1/OST1 complex, however, prevented SLAC1 activation. Our studies demonstrate that SLAC1 represents the slow, deactivating, weak voltage-dependent anion channel of guard cells controlled by phosphorylation/dephosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities

Dietmar Geiger; Sönke Scherzer; Patrick Mumm; Irene Marten; Peter Ache; Susanne Matschi; Anja Liese; C. Wellmann; Khaled A. S. Al-Rasheid; Erwin Grill; Tina Romeis; Rainer Hedrich

In response to drought stress, the phytohormone abscisic acid (ABA) induces stomatal closure. Thereby the stress hormone activates guard cell anion channels in a calcium-dependent, as well as –independent, manner. Open stomata 1 protein kinase (OST1) and ABI1 protein phosphatase (ABA insensitive 1) represent key components of calcium-independent ABA signaling. Recently, the guard cell anion channel SLAC1 was identified. When expressed heterologously SLAC1 remained electrically silent. Upon coexpression with Ca2+-independent OST1, however, SLAC1 anion channels appear activated in an ABI1-dependent manner. Mutants lacking distinct calcium-dependent protein kinases (CPKs) appeared impaired in ABA stimulation of guard cell ion channels, too. To study SLAC1 activation via the calcium-dependent ABA pathway, we studied the SLAC1 response to CPKs in the Xenopus laevis oocyte system. Split YFP-based protein–protein interaction assays, using SLAC1 as the bait, identified guard cell expressed CPK21 and 23 as major interacting partners. Upon coexpression of SLAC1 with CPK21 and 23, anion currents document SLAC1 stimulation by these guard cell protein kinases. Ca2+-sensitive activation of SLAC1, however, could be assigned to the CPK21 pathway only because CPK23 turned out to be rather Ca2+-insensitive. In line with activation by OST1, CPK activation of the guard cell anion channel was suppressed by ABI1. Thus the CPK and OST1 branch of ABA signal transduction in guard cells seem to converge on the level of SLAC1 under the control of the ABI1/ABA-receptor complex.


Trends in Plant Science | 2014

A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants

Sophie Léran; Kranthi Varala; Jean Christophe Boyer; Maurizio Chiurazzi; Nigel M. Crawford; Françoise Daniel-Vedele; Laure C. David; Rebecca Dickstein; Emilio Fernández; Brian G. Forde; Walter Gassmann; Dietmar Geiger; Alain Gojon; Ji Ming Gong; Barbara Ann Halkier; Jeanne M. Harris; Rainer Hedrich; Anis M. Limami; Doris Rentsch; Mitsunori Seo; Yi-Fang Tsay; Mingyong Zhang; Gloria M. Coruzzi; Benoît Lacombe

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.


Science Signaling | 2011

Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1

Dietmar Geiger; Tobias Maierhofer; Khaled A. S. Al-Rasheid; Sönke Scherzer; Patrick Mumm; Anja Liese; Peter Ache; Christian Wellmann; Irene Marten; Erwin Grill; Tina Romeis; Rainer Hedrich

Plant survival during periods of drought may involve SLAH3, a nitrate-conducting anion channel activated by abscisic acid. Conducting Closure Stomata are pores in the plant epidermis that allow the movement of CO2 into the plant concomitant with the loss of water. The opening and closing of these pores is mediated by the surrounding guard cells, which respond to drought, nutrient availability, and the plant stress hormone abscisic acid (ABA). Geiger et al. identified the anion channel SLAH3 as a player in the guard cell pathway downstream of ABA and defined its mode of regulation through an ABA receptor–phosphatase RCAR1-ABI complex and a calcium-dependent kinase, CPK21. Unlike previously characterized anion channels that are regulated by ABA and contribute to stomatal closure, activation of SLAH3 was promoted by nitrate and was 20 times as permeable to nitrate ions as to chloride ions. Thus, SLAH3 may integrate nitrate signaling and metabolism with signals initiated by drought conditions to control respiration and water loss. S-type anion channels are direct targets of abscisic acid (ABA) signaling and contribute to chloride and nitrate release from guard cells, which in turn initiates stomatal closure. SLAC1 was the first component of the guard cell S-type anion channel identified. However, we found that guard cells of Arabidopsis SLAC1 mutants exhibited nitrate conductance. SLAH3 (SLAC1 homolog 3) was also present in guard cells, and coexpression of SLAH3 with the calcium ion (Ca2+)–dependent kinase CPK21 in Xenopus oocytes mediated nitrate-induced anion currents. Nitrate, calcium, and phosphorylation regulated SLAH3 activity. CPK21-dependent SLAH3 phosphorylation and activation were blocked by ABI1, a PP2C-type protein phosphatase that is inhibited by ABA and inhibits the ABA signaling pathway in guard cells. We reconstituted the ABA-stimulated phosphorylation of the SLAH3 amino-terminal domain by CPK21 in vitro by including the ABA receptor–phosphatase complex RCAR1-ABI1 in the reactions. We propose that ABA perception by the complex consisting of ABA receptors of the RCAR/PYR/PYL family and ABI1 releases CPK21 from inhibition by ABI1, and then CPK21 is further activated by an increase in the cytosolic Ca2+ concentration, leading to its phosphorylation of SLAH3. Thus, the identification of SLAH3 as the nitrate-, calcium-, and ABA-sensitive guard cell anion channel provides insights into the relationship among stomatal response to drought, signaling by nitrate, and nitrate metabolism.


Nature | 2012

NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds

Hussam Hassan Nour-Eldin; Tonni Grube Andersen; Meike Burow; Svend Roesen Madsen; Morten Egevang Jørgensen; Carl Erik Olsen; Ingo Dreyer; Rainer Hedrich; Dietmar Geiger; Barbara Ann Halkier

In plants, transport processes are important for the reallocation of defence compounds to protect tissues of high value, as demonstrated in the plant model Arabidopsis, in which the major defence compounds, glucosinolates, are translocated to seeds on maturation. The molecular basis for long-distance transport of glucosinolates and other defence compounds, however, remains unknown. Here we identify and characterize two members of the nitrate/peptide transporter family, GTR1 and GTR2, as high-affinity, proton-dependent glucosinolate-specific transporters. The gtr1 gtr2 double mutant did not accumulate glucosinolates in seeds and had more than tenfold over-accumulation in source tissues such as leaves and silique walls, indicating that both plasma membrane-localized transporters are essential for long-distance transport of glucosinolates. We propose that GTR1 and GTR2 control the loading of glucosinolates from the apoplasm into the phloem. Identification of the glucosinolate transporters has agricultural potential as a means to control allocation of defence compounds in a tissue-specific manner.


Plant Journal | 2010

AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells

Stefan Meyer; Patrick Mumm; Dennis Imes; Anne Endler; Barbara Weder; Khaled A. S. Al-Rasheid; Dietmar Geiger; Irene Marten; Enrico Martinoia; Rainer Hedrich

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO₂ -induced stomatal closure, as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and K(+) efflux via SLAC1 and GORK, respectively.


PLOS Biology | 2010

Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1

Suseno Amien; Irina Kliwer; Mihaela L. Márton; T. Debener; Dietmar Geiger; Dirk Becker; Thomas Dresselhaus

In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.


Journal of Biological Chemistry | 2005

Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.

Armando Carpaneto; Dietmar Geiger; Ernst Bamberg; Norbert Sauer; Jörg Fromm; Rainer Hedrich

The phloem network is as essential for plants as the vascular system is for humans. This network, assembled by nucleus- and vacuole-free interconnected living cells, represents a long distance transport pathway for nutrients and information. According to the Münch hypothesis, osmolytes such as sucrose generate the hydrostatic pressure that drives nutrient and water flow between the source and the sink phloem (Münch, E. (1930) Die Stoffbewegungen in der Pflanze, Gustav Fischer, Jena, Germany). Although proton-coupled sucrose carriers have been localized to the sieve tube and the companion cell plasma membrane of both source and sink tissues, knowledge of the molecular representatives and the mechanism of the sucrose phloem efflux is still scant. We expressed ZmSUT1, a maize sucrose/proton symporter, in Xenopus oocytes and studied the transport characteristics of the carrier by electrophysiological methods. Using the patch clamp techniques in the giant inside-out patch mode, we altered the chemical and electrochemical gradient across the sucrose carrier and analyzed the currents generated by the proton flux. Thereby we could show that ZmSUT1 is capable of mediating both the sucrose uptake into the phloem in mature leaves (source) as well as the desorption of sugar from the phloem vessels into heterotrophic tissues (sink). As predicted from a perfect molecular machine, the ZmSUT1-mediated sucrose-coupled proton current was reversible and depended on the direction of the sucrose and pH gradient as well as the membrane potential across the transporter.


Journal of Biological Chemistry | 2009

Heteromeric AtKC1·AKT1 Channels in Arabidopsis Roots Facilitate Growth under K+-limiting Conditions

Dietmar Geiger; Dirk Becker; Daniel Vosloh; Franco Gambale; Klaus Palme; Marion Rehers; Uta Anschuetz; Ingo Dreyer; Jörg Kudla; Rainer Hedrich

Plant growth and development is driven by osmotic processes. Potassium represents the major osmotically active cation in plants cells. The uptake of this inorganic osmolyte from the soil in Arabidopsis involves a root K+ uptake module consisting of the two K+ channel α-subunits, AKT1 and AtKC1. AKT1-mediated potassium absorption from K+-depleted soil was shown to depend on the calcium-sensing proteins CBL1/9 and their interacting kinase CIPK23. Here we show that upon activation by the CBL·CIPK complex in low external potassium homomeric AKT1 channels open at voltages positive of EK, a condition resulting in cellular K+ leakage. Although at submillimolar external potassium an intrinsic K+ sensor reduces AKT1 channel cord conductance, loss of cytosolic potassium is not completely abolished under these conditions. Depending on channel activity and the actual potassium gradients, this channel-mediated K+ loss results in impaired plant growth in the atkc1 mutant. Incorporation of the AtKC1 subunit into the channel complex, however, modulates the properties of the K+ uptake module to prevent K+ loss. Upon assembly of AKT1 and AtKC1, the activation threshold of the root inward rectifier voltage gate is shifted negative by approximately −70 mV. Additionally, the channel conductance gains a hypersensitive K+ dependence. Together, these two processes appear to represent a safety strategy preventing K+ loss through the uptake channels under physiological conditions. Similar growth retardation phenotypes of akt1 and atkc1 loss-of-function mutants in response to limiting K+ supply further support such functional interdependence of AKT1 and AtKC1. Taken together, these findings suggest an essential role of AtKC1-like subunits for root K+ uptake and K+ homeostasis when plants experience conditions of K+ limitation.


The Plant Cell | 2005

Arabidopsis POLYOL TRANSPORTER5, a New Member of the Monosaccharide Transporter-Like Superfamily, Mediates H+-Symport of Numerous Substrates, Including myo-Inositol, Glycerol, and Ribose

Yvonne-Simone Klepek; Dietmar Geiger; Ruth Stadler; Franz Klebl; Lucie Landouar-Arsivaud; Rémi Lemoine; Rainer Hedrich; Norbert Sauer

Six genes of the Arabidopsis thaliana monosaccharide transporter-like (MST-like) superfamily share significant homology with polyol transporter genes previously identified in plants translocating polyols (mannitol or sorbitol) in their phloem (celery [Apium graveolens], common plantain [Plantago major], or sour cherry [Prunus cerasus]). The physiological role and the functional properties of this group of proteins were unclear in Arabidopsis, which translocates sucrose and small amounts of raffinose rather than polyols. Here, we describe POLYOL TRANSPORTER5 (AtPLT5), the first member of this subgroup of Arabidopsis MST-like transporters. Transient expression of an AtPLT5–green fluorescent protein fusion in plant cells and functional analyses of the AtPLT5 protein in yeast and Xenopus oocytes demonstrate that AtPLT5 is located in the plasma membrane and characterize this protein as a broad-spectrum H+-symporter for linear polyols, such as sorbitol, xylitol, erythritol, or glycerol. Unexpectedly, however, AtPLT5 catalyzes also the transport of the cyclic polyol myo-inositol and of different hexoses and pentoses, including ribose, a sugar that is not transported by any of the previously characterized plant sugar transporters. RT-PCR analyses and AtPLT5 promoter-reporter gene plants revealed that AtPLT5 is most strongly expressed in Arabidopsis roots, but also in the vascular tissue of leaves and in specific floral organs. The potential physiological role of AtPLT5 is discussed.

Collaboration


Dive into the Dietmar Geiger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Ache

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Marten

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Dirk Becker

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Mumm

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge