Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene Marten is active.

Publication


Featured researches published by Irene Marten.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair

Dietmar Geiger; Sönke Scherzer; Patrick Mumm; Annette Stange; Irene Marten; Hubert Bauer; Peter Ache; Susanne Matschi; Anja Liese; Khaled A. S. Al-Rasheid; Tina Romeis; Rainer Hedrich

In response to drought stress the phytohormone ABA (abscisic acid) induces stomatal closure and, therein, activates guard cell anion channels in a calcium-dependent as well as-independent manner. Two key components of the ABA signaling pathway are the protein kinase OST1 (open stomata 1) and the protein phosphatase ABI1 (ABA insensitive 1). The recently identified guard cell anion channel SLAC1 appeared to be the key ion channel in this signaling pathway but remained electrically silent when expressed heterologously. Using split YFP assays, we identified OST1 as an interaction partner of SLAC1 and ABI1. Upon coexpression of SLAC1 with OST1 in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Integration of ABI1 into the SLAC1/OST1 complex, however, prevented SLAC1 activation. Our studies demonstrate that SLAC1 represents the slow, deactivating, weak voltage-dependent anion channel of guard cells controlled by phosphorylation/dephosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities

Dietmar Geiger; Sönke Scherzer; Patrick Mumm; Irene Marten; Peter Ache; Susanne Matschi; Anja Liese; C. Wellmann; Khaled A. S. Al-Rasheid; Erwin Grill; Tina Romeis; Rainer Hedrich

In response to drought stress, the phytohormone abscisic acid (ABA) induces stomatal closure. Thereby the stress hormone activates guard cell anion channels in a calcium-dependent, as well as –independent, manner. Open stomata 1 protein kinase (OST1) and ABI1 protein phosphatase (ABA insensitive 1) represent key components of calcium-independent ABA signaling. Recently, the guard cell anion channel SLAC1 was identified. When expressed heterologously SLAC1 remained electrically silent. Upon coexpression with Ca2+-independent OST1, however, SLAC1 anion channels appear activated in an ABI1-dependent manner. Mutants lacking distinct calcium-dependent protein kinases (CPKs) appeared impaired in ABA stimulation of guard cell ion channels, too. To study SLAC1 activation via the calcium-dependent ABA pathway, we studied the SLAC1 response to CPKs in the Xenopus laevis oocyte system. Split YFP-based protein–protein interaction assays, using SLAC1 as the bait, identified guard cell expressed CPK21 and 23 as major interacting partners. Upon coexpression of SLAC1 with CPK21 and 23, anion currents document SLAC1 stimulation by these guard cell protein kinases. Ca2+-sensitive activation of SLAC1, however, could be assigned to the CPK21 pathway only because CPK23 turned out to be rather Ca2+-insensitive. In line with activation by OST1, CPK activation of the guard cell anion channel was suppressed by ABI1. Thus the CPK and OST1 branch of ABA signal transduction in guard cells seem to converge on the level of SLAC1 under the control of the ABI1/ABA-receptor complex.


Science Signaling | 2011

Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1

Dietmar Geiger; Tobias Maierhofer; Khaled A. S. Al-Rasheid; Sönke Scherzer; Patrick Mumm; Anja Liese; Peter Ache; Christian Wellmann; Irene Marten; Erwin Grill; Tina Romeis; Rainer Hedrich

Plant survival during periods of drought may involve SLAH3, a nitrate-conducting anion channel activated by abscisic acid. Conducting Closure Stomata are pores in the plant epidermis that allow the movement of CO2 into the plant concomitant with the loss of water. The opening and closing of these pores is mediated by the surrounding guard cells, which respond to drought, nutrient availability, and the plant stress hormone abscisic acid (ABA). Geiger et al. identified the anion channel SLAH3 as a player in the guard cell pathway downstream of ABA and defined its mode of regulation through an ABA receptor–phosphatase RCAR1-ABI complex and a calcium-dependent kinase, CPK21. Unlike previously characterized anion channels that are regulated by ABA and contribute to stomatal closure, activation of SLAH3 was promoted by nitrate and was 20 times as permeable to nitrate ions as to chloride ions. Thus, SLAH3 may integrate nitrate signaling and metabolism with signals initiated by drought conditions to control respiration and water loss. S-type anion channels are direct targets of abscisic acid (ABA) signaling and contribute to chloride and nitrate release from guard cells, which in turn initiates stomatal closure. SLAC1 was the first component of the guard cell S-type anion channel identified. However, we found that guard cells of Arabidopsis SLAC1 mutants exhibited nitrate conductance. SLAH3 (SLAC1 homolog 3) was also present in guard cells, and coexpression of SLAH3 with the calcium ion (Ca2+)–dependent kinase CPK21 in Xenopus oocytes mediated nitrate-induced anion currents. Nitrate, calcium, and phosphorylation regulated SLAH3 activity. CPK21-dependent SLAH3 phosphorylation and activation were blocked by ABI1, a PP2C-type protein phosphatase that is inhibited by ABA and inhibits the ABA signaling pathway in guard cells. We reconstituted the ABA-stimulated phosphorylation of the SLAH3 amino-terminal domain by CPK21 in vitro by including the ABA receptor–phosphatase complex RCAR1-ABI1 in the reactions. We propose that ABA perception by the complex consisting of ABA receptors of the RCAR/PYR/PYL family and ABI1 releases CPK21 from inhibition by ABI1, and then CPK21 is further activated by an increase in the cytosolic Ca2+ concentration, leading to its phosphorylation of SLAH3. Thus, the identification of SLAH3 as the nitrate-, calcium-, and ABA-sensitive guard cell anion channel provides insights into the relationship among stomatal response to drought, signaling by nitrate, and nitrate metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation.

Melanie Krebs; Diana Beyhl; Esther Görlich; Khaled A. S. Al-Rasheid; Irene Marten; York-Dieter Stierhof; Rainer Hedrich; Karin Schumacher

The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H+-ATPase (V-ATPase) and the vacuolar H+-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn2+/H+-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na+/H+-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.


Plant Journal | 2010

AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells

Stefan Meyer; Patrick Mumm; Dennis Imes; Anne Endler; Barbara Weder; Khaled A. S. Al-Rasheid; Dietmar Geiger; Irene Marten; Enrico Martinoia; Rainer Hedrich

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO₂ -induced stomatal closure, as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and K(+) efflux via SLAC1 and GORK, respectively.


The EMBO Journal | 1993

Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells.

Rainer Hedrich; Irene Marten

Plants have developed strategies to circumvent limitations in water supply through the adjustment of stomatal aperture in relation to the photosynthetic capacity (water‐use efficiency). The CO2 sensor of guard cells, reporting on the metabolic status of the photosynthetic tissue, is, however, as yet unknown. We elucidated whether extracellular malate has the capability to serve as a signal metabolite in regulating the membrane properties of guard cells. Patch‐clamp studies showed that slight variations in the external malate concentration induced major alterations in the voltage‐dependent activity of the guard cell anion channel (GCAC1). Superfusion of guard cell protoplasts with malate solutions in the physiological range caused the voltage‐gate to shift towards hyperpolarized potentials (Km(mal) = 0.4 mM elicits a 38 mV shift). The selectivity sequence of the anion channel NO3‐ (4.2) > or = I‐ (3.9) > Br‐ (1.9) > Cl‐ (1) >> mal (0.1) indicates that malate is able to permeate GCAC1. The binding site for shifting the gate is, however, located on the extracellular face of the channel since cytoplasmic malate proved ineffective. Single‐channel analysis indicates that extracellular malate affects the voltage‐dependent mean open time rather than the unitary conductance of GCAC1. In contrast to malate the rise in the extracellular Cl‐ concentration increases the unit conductance of the anion efflux channel. We suggest that stomata sense changes in the intercellular CO2 concentration and thus the photosynthetic activity of the mesophyll via feedback regulation of anion efflux from guard cells through malate‐sensitive GCAC1.


Plant Journal | 2011

Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.

Alexander Schulz; Diana Beyhl; Irene Marten; Alexandra Wormit; Ekkehard Neuhaus; Gernot Poschet; Michael Büttner; Sabine Schneider; Norbert Sauer; Rainer Hedrich

The vacuolar membrane is involved in solute uptake into and release from the vacuole, which is the largest plant organelle. In addition to inorganic ions and metabolites, large quantities of protons and sugars are shuttled across this membrane. Current models suggest that the proton gradient across the membrane drives the accumulation and/or release of sugars. Recent studies have associated AtSUC4 with the vacuolar membrane. Some members of the SUC family are plasma membrane proton/sucrose symporters. In addition, the sugar transporters TMT1 and TMT2, which are localized to the vacuolar membrane, have been suggested to function in proton-driven glucose antiport. Here we used the patch-clamp technique to monitor carrier-mediated sucrose transport by AtSUC4 and AtTMTs in intact Arabidopsis thaliana mesophyll vacuoles. In the whole-vacuole configuration with wild-type material, cytosolic sucrose-induced proton currents were associated with a proton/sucrose antiport mechanism. To identify the related transporter on one hand, and to enable the recording of symporter-mediated currents on the other hand, we electrophysiologically characterized vacuolar proteins recognized by Arabidopsis mutants of partially impaired sugar compartmentation. To our surprise, the intrinsic sucrose/proton antiporter activity was greatly reduced when vacuoles were isolated from plants lacking the monosaccharide transporter AtTMT1/TMT2. Transient expression of AtSUC4 in this mutant background resulted in proton/sucrose symport activity. From these studies, we conclude that, in the natural environment within the Arabidopsis cell, AtSUC4 most likely catalyses proton-coupled sucrose export from the vacuole. However, TMT1/2 probably represents a proton-coupled antiporter capable of high-capacity loading of glucose and sucrose into the vacuole.


Molecular Plant | 2011

TPC1 - SV Channels Gain Shape

Rainer Hedrich; Irene Marten

The most prominent ion channel localized in plant vacuoles is the slow activating SV type. Slow vacuolar (SV) channels were discovered by patch clamp studies as early as 1986. In the following two decades, numerous studies revealed that these calcium- and voltage-activated, nonselective cation channels are expressed in the vacuoles of all plants and every plant tissue. The voltage-dependent properties of the SV channel are susceptible to modulation by calcium, pH, redox state, as well as regulatory proteins. In Arabidopsis, the SV channel is encoded by the AtTPC1 gene, and even though its gene product represents the by far largest conductance of the vacuolar membrane, tpc1-loss-of-function mutants appeared not to be impaired in major physiological functions such as growth, development, and reproduction. In contrast, the fou2 gain-of-function point mutation D454N within TPC1 leads to a pronounced growth phenotype and increased synthesis of the stress hormone jasmonate. Since the TPC1 gene is present in all land plants, it likely encodes a very general function. In this review, we will discuss major SV channel properties and their impact on plant cell physiology.


The EMBO Journal | 1992

Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands.

Irene Marten; Zeilinger C; Redhead C; Landry Dw; al-Awqati Q; Rainer Hedrich

Guard cell anion channels (GCAC1) catalyze the release of anions across the plasma membrane during regulated volume decrease and also seem to be involved in the targeting of the plant growth hormones auxins. We have analyzed the modulation and inhibition of these voltage‐dependent anion channels by different anion channel blockers. Ethacrynic acid, a structural correlate of an auxin, caused a shift in activation potential and simultaneously a transient increase in the peak current amplitude, whereas other blockers shifted and blocked the voltage‐dependent activity of the channel. Comparison of dose‐response curves for shift and block imposed by the inhibitor, indicate two different sites within the channel which interact with the ligand. The capability to inhibit GCAC1 increases in a dose‐dependent manner in the sequence: probenecid less than A‐9‐C less than ethacrynic acid less than niflumic acid less than IAA‐94 less than NPPB. All inhibitors reversibly blocked the anion channel from the extracellular side. Channel block on the level of single anion channels is characterized by a reduction of long open transitions into flickering bursts, indicating an interaction with the open mouth of the channel. IAA‐23, a structural analog of IAA‐94, was used to enrich ligand‐binding polypeptides from the plasma membrane of guard cells by IAA‐23 affinity chromatography. From this protein fraction a 60 kDa polypeptide crossreacted specifically with polyclonal antibodies raised against anion channels isolated from kidney membranes. In contrast to guard cells, mesophyll plasma membranes were deficient in voltage‐dependent anion channels and lacked crossreactivity with the antibody.


Plant Journal | 2009

The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium.

Diana Beyhl; Stefan Hörtensteiner; Enrico Martinoia; Edward E. Farmer; Jörg Fromm; Irene Marten; Rainer Hedrich

The SV channel encoded by the TPC1 gene represents a Ca(2+)- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca(2+)-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca(2+) before SV channel activity vanishes and K(+) homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.

Collaboration


Dive into the Irene Marten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Mumm

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Norbert Sauer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Peter Ache

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Beyhl

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Dirk Becker

University of Würzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge