Dimitri Papadopoulos Orfanos
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dimitri Papadopoulos Orfanos.
JAMA Psychiatry | 2015
Leon French; Courtney Gray; Gabriel Leonard; Michel Perron; G. Bruce Pike; Louis Richer; Jean R. Séguin; Suzanne Veillette; C. John Evans; Eric Artiges; Tobias Banaschewski; Arun W L Bokde; Uli Bromberg; Ruediger Bruehl; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Hervé Lemaitre; Jean-Luc Martinot; Frauke Nees; Dimitri Papadopoulos Orfanos; Melissa M. Pangelinan; Luise Poustka; Marcella Rietschel
IMPORTANCE Cannabis use during adolescence is known to increase the risk for schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence may be of particular importance with regard to vulnerability of the male brain to cannabis exposure. OBJECTIVE To evaluate whether the association between cannabis use and cortical maturation in adolescents is moderated by a polygenic risk score for schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Observation of 3 population-based samples included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899 [57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics Consortium. Data analysis was performed from March 1 through December 31, 2014. MAIN OUTCOMES AND MEASURES Cortical thickness derived from T1-weighted magnetic resonance images. Linear regression tests were used to assess the relationships between cannabis use, cortical thickness, and risk score. RESULTS Across the 3 samples of 1574 participants, a negative association was observed between cannabis use in early adolescence and cortical thickness in male participants with a high polygenic risk score. This observation was not the case for low-risk male participants or for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = -2.36; P = .02). Finally, in the ALSPAC high-risk group of male participants, those who used cannabis most frequently (≥61 occasions) had lower cortical thickness than those who never used cannabis (difference in cortical thickness, 0.07 [95% CI, 0.01-0.12]; P = .02) and those with light use (<5 occasions) (difference in cortical thickness, 0.11 [95% CI, 0.03-0.18]; P = .004). CONCLUSIONS AND RELEVANCE Cannabis use in early adolescence moderates the association between the genetic risk for schizophrenia and cortical maturation among male individuals. This finding implicates processes underlying cortical maturation in mediating the link between cannabis use and liability to schizophrenia.
JAMA Psychiatry | 2016
Thomas Lancaster; David Edmund Johannes Linden; Katherine E. Tansey; Tobias Banaschewski; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Eric Artiges; Hervé Lemaitre; Frauke Nees; Dimitri Papadopoulos Orfanos; Tomá Paus; Luise Poustka; Michael N. Smolka; Nora C. Vetter; Sarah Jurk; Eva Mennigen; Henrik Walter; Robert Whelan
IMPORTANCE Psychotic disorders are characterized by attenuated activity in the brains valuation system in key reward processing areas, such as the ventral striatum (VS), as measured with functional magnetic resonance imaging. OBJECTIVE To examine whether common risk variants for psychosis are associated with individual variation in the VS. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study of a large cohort of adolescents from the IMAGEN study (a European multicenter study of reinforcement sensitivity in adolescents) was performed from March 1, 2008, through December 31, 2011. Data analysis was conducted from October 1, 2015, to January 9, 2016. Polygenic risk profile scores (RPSs) for psychosis were generated for 1841 healthy adolescents. Sample size and characteristics varied across regression analyses, depending on mutual information available (N = 1524-1836). MAIN OUTCOMES AND MEASURES Reward-related brain function was assessed with blood oxygen level dependency (BOLD) in the VS using the monetary incentive delay (MID) task, distinguishing reward anticipation and receipt. Behavioral impulsivity, IQ, MID task performance, and VS BOLD were regressed against psychosis RPS at 4 progressive P thresholds (P < .01, P < .05, P < .10, and P < .50 for RPS models 1-4, respectively). RESULTS In a sample of 1841 healthy adolescents (mean age, 14.5 years; 906 boys and 935 girls), we replicated an association between increasing psychosis RPS and reduced IQ (matrix reasoning: corrected P = .003 for RPS model 2, 0.4% variance explained), supporting the validity of the psychosis RPS models. We also found a nominally significant association between increased psychosis RPS and reduced MID task performance (uncorrected P = .03 for RPS model 4, 0.2% variance explained). Our main finding was a positive association between psychosis RPS and VS BOLD during reward anticipation at all 4 psychosis RPS models and for 2 P thresholds for reward receipt (RPS models 1 and 3), correcting for the familywise error rate (0.8%-1.9% variance explained). CONCLUSIONS AND RELEVANCE These findings support an association between psychosis RPS and VS BOLD in adolescents. Genetic risk for psychosis may shape an individuals response to rewarding stimuli.
Pain | 2017
Frauke Nees; Susanne Becker; Sabina Millenet; Tobias Banaschewski; Luise Poustka; Arun L.W. Bokde; Uli Bromberg; Christian Buechel; Patricia J. Conrod; Sylvane Desrivières; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Andreas Heinz; Bernd Ittermann; Jean-Luc Martinot; Dimitri Papadopoulos Orfanos; Tomáš Paus; Michael N. Smolka; Henrik Walter; Robert Whelan; Gunter Schumann; Herta Flor
Abstract The processing of reward and reinforcement learning seems to be important determinants of pain chronicity. However, reward processing is already altered early in life and if this is related to the development of pain symptoms later on is not known. The aim of this study was first to examine whether behavioural and brain-related indicators of reward processing at the age of 14 to 15 years are significant predictors of pain complaints 2 years later, at 16 to 17 years. Second, we investigated the contribution of genetic variations in the opioidergic system, which is linked to the processing of both, reward and pain, to this prediction. We used the monetary incentive delay task to assess reward processing, the Childrens Somatization Inventory as measure of pain complaints and tested the effects of 2 single nucleotide polymorphisms (rs1799971/rs563649) of the human &mgr;-opioid receptor gene. We found a significant prediction of pain complaints by responses in the dorsal striatum during reward feedback, independent of genetic predisposition. The relationship of pain complaints and activation in the periaqueductal gray and ventral striatum depended on the T-allele of rs563649. Carriers of this allele also showed more pain complaints than CC-allele carriers. Therefore, brain responses to reward outcomes and higher sensitivity to pain might be related already early in life and may thus set the course for pain complaints later in life, partly depending on a specific opioidergic genetic predisposition.
Biological Psychiatry | 2017
Matthew D. Albaugh; Catherine Orr; Bader Chaarani; Robert R. Althoff; Nicholas Allgaier; Nicholas D’Alberto; Kelsey E. Hudson; Scott Mackey; Philip A. Spechler; Tobias Banaschewski; Rüdiger Brühl; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Sylvane Desrivières; Herta Flor; Vincent Frouin; Jürgen Gallinat; Robert Goodman; Penny A. Gowland; Yvonne Grimmer; Andreas Heinz; Viola Kappel; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Frauke Nees; Dimitri Papadopoulos Orfanos; Jani Penttilä
BACKGROUND Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability-an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression. METHODS Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated. RESULTS Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology. CONCLUSIONS This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD.
Frontiers in Neuroanatomy | 2015
Claire Cury; Roberto Toro; Fanny Cohen; Clara Fischer; Amel Mhaya; Jorge Samper-González; Jean Frangois Mangin; Tobias Banaschewski; Arun L.W. Bokde; Uli Bromberg; Christian Buechel; Anna Cattrell; Patricia J. Conrod; Herta Flor; Juergen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Hervé Lemaitre; Jean-Luc Martinot; Frauke Nees; Marie Laure Paillère Martinot; Dimitri Papadopoulos Orfanos; Tomáš Paus; Luise Poustka; Michael N. Smolka; Henrik Walter; Robert Whelan; Vincent Frouin
The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ2−test, p < 10−28). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe.
Human Brain Mapping | 2017
Wanlu Deng; Edmund T. Rolls; Xiaoxi Ji; Trevor W. Robbins; Tobias Banaschewski; Arun L.W. Bokde; Uli Bromberg; Christian Buechel; Sylvane Desrivières; Patricia J. Conrod; Herta Flor; Vincent Frouin; Juergen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Jean-Luc Martinot; Hervé Lemaitre; Frauke Nees; Dimitri Papadopoulos Orfanos; Luise Poustka; Michael N. Smolka; Henrik Walter; Robert Whelan; Gunter Schumann; Jianfeng Feng
To analyze the involvement of different brain regions in behavioral inhibition and impulsiveness, differences in activation were investigated in fMRI data from a response inhibition task, the stop‐signal task, in 1709 participants. First, areas activated more in stop‐success (SS) than stop‐failure (SF) included the lateral orbitofrontal cortex (OFC) extending into the inferior frontal gyrus (ventrolateral prefrontal cortex, BA 47/12), and the dorsolateral prefrontal cortex (DLPFC). Second, the anterior cingulate and anterior insula (AI) were activated more on failure trials, specifically in SF versus SS. The interaction between brain region and SS versus SF activations was significant (P = 5.6 * 10−8). The results provide new evidence from this “big data” investigation consistent with the hypotheses that the lateral OFC is involved in the stop‐related processing that inhibits the action; that the DLPFC is involved in attentional processes that influence task performance; and that the AI and anterior cingulate are involved in emotional processes when failure occurs. The investigation thus emphasizes the role of the human lateral OFC BA 47/12 in changing behavior, and inhibiting behavior when necessary. A very similar area in BA47/12 is involved in changing behavior when an expected reward is not obtained, and has been shown to have high functional connectivity in depression. Hum Brain Mapp 38:3527–3537, 2017.
American Journal of Psychiatry | 2017
Josiane Bourque; Philip A. Spechler; Stéphane Potvin; Robert Whelan; Tobias Banaschewski; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Erin Burke Quinlan; Sylvane Desrivières; Herta Flor; Vincent Frouin; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Jean-Luc Martinot; Marie-Laure Paillère-Martinot; Sarah McEwen; Frauke Nees; Dimitri Papadopoulos Orfanos; Tomáš Paus; Luise Poustka; Michael N. Smolka; Nora C. Vetter; Henrik Walter; Gunter Schumann; Hugh Garavan; Patricia J. Conrod
OBJECTIVE This study investigated the neural correlates of psychotic-like experiences in youths during tasks involving inhibitory control, reward anticipation, and emotion processing. A secondary aim was to test whether these neurofunctional correlates of risk were predictive of psychotic symptoms 2 years later. METHOD Functional imaging responses to three paradigms-the stop-signal, monetary incentive delay, and faces tasks-were collected in youths at age 14, as part of the IMAGEN study. At baseline, youths from London and Dublin sites were assessed on psychotic-like experiences, and those reporting significant experiences were compared with matched control subjects. Significant brain activity differences between the groups were used to predict, with cross-validation, the presence of psychotic symptoms in the context of mood fluctuation at age 16, assessed in the full sample. These prediction analyses were conducted with the London-Dublin subsample (N=246) and the full sample (N=1,196). RESULTS Relative to control subjects, youths reporting psychotic-like experiences showed increased hippocampus/amygdala activity during processing of neutral faces and reduced dorsolateral prefrontal activity during failed inhibition. The most prominent regional difference for classifying 16-year-olds with mood fluctuation and psychotic symptoms relative to the control groups (those with mood fluctuations but no psychotic symptoms and those with no mood symptoms) was hyperactivation of the hippocampus/amygdala, when controlling for baseline psychotic-like experiences and cannabis use. CONCLUSIONS The results stress the importance of the limbic networks increased response to neutral facial stimuli as a marker of the extended psychosis phenotype. These findings might help to guide early intervention strategies for at-risk youths.
Developmental Neuropsychology | 2016
Lee Jollans; Cao Zhipeng; Ilknur Icke; Ciara M. Greene; Clare Kelly; Tobias Banaschewski; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Sylvane Desrivières; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Jean-Luc Martinot; Eric Artiges; Frauke Nees; Dimitri Papadopoulos Orfanos; Tomáš Paus; Michael N. Smolka; Henrik Walter; Gunter Schumann; Robert Whelan
ABSTRACT Substance misusers, including adolescent smokers, often have reduced reward system activity during processing of non-drug rewards. Using a psychophysiological interaction approach, we examined functional connectivity with the ventral striatum during reward anticipation in a large (N = 206) sample of adolescent smokers. Increased smoking frequency was associated with (1) increased connectivity with regions involved in saliency and valuation, including the orbitofrontal cortex and (2) reduced connectivity between the ventral striatum and regions associated with inhibition and risk aversion, including the right inferior frontal gyrus. These results demonstrate that functional connectivity during reward processing is relevant to adolescent addiction.
Cerebral Cortex | 2018
Matthew D. Albaugh; Masha Y. Ivanova; Bader Chaarani; Catherine Orr; Nicholas Allgaier; Robert R. Althoff; Nicholas D’Alberto; Kelsey E. Hudson; Scott Mackey; Philip A. Spechler; Tobias Banaschewski; Rüdiger Brühl; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Sylvane Desrivières; Herta Flor; Vincent Frouin; Jürgen Gallinat; Robert Goodman; Penny A. Gowland; Yvonne Grimmer; Andreas Heinz; Viola Kappel; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Frauke Nees; Dimitri Papadopoulos Orfanos
Youths with attention-deficit/hyperactivity disorder symptomatology often exhibit residual inattention and/or hyperactivity in adulthood; however, this is not true for all individuals. We recently reported that dimensional, multi-informant ratings of hyperactive/inattentive symptoms are associated with ventromedial prefrontal cortex (vmPFC) structure. Herein, we investigate the degree to which vmPFC structure during adolescence predicts hyperactive/inattentive symptomatology at 5-year follow-up. Structural equation modeling was used to test the extent to which adolescent vmPFC volume predicts hyperactive/inattentive symptomatology 5 years later in early adulthood. 1104 participants (M = 14.52 years, standard deviation = 0.42; 583 females) possessed hyperactive/inattentive symptom data at 5-year follow-up, as well as quality controlled neuroimaging data and complete psychometric data at baseline. Self-reports of hyperactive/inattentive symptomatology were obtained during adolescence and at 5-year follow-up using the Strengths and Difficulties Questionnaire (SDQ). At baseline and 5-year follow-up, a hyperactive/inattentive latent variable was derived from items on the SDQ. Baseline vmPFC volume predicted adult hyperactive/inattentive symptomatology (standardized coefficient = -0.274, P < 0.001) while controlling for baseline hyperactive/inattentive symptomatology. These results are the first to reveal relations between adolescent brain structure and adult hyperactive/inattentive symptomatology, and suggest that early structural development of the vmPFC may be consequential for the subsequent expression of hyperactive/inattentive symptoms.
Frontiers in Neuroinformatics | 2017
Antoine Grigis; David Goyard; Robin Cherbonnier; Thomas Gareau; Dimitri Papadopoulos Orfanos; Nicolas Chauvat; Adrien Di Mascio; Gunter Schumann; Will Spooren; Declan Murphy; Vincent Frouin
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.
Collaboration
Dive into the Dimitri Papadopoulos Orfanos's collaboration.
Commissariat à l'énergie atomique et aux énergies alternatives
View shared research outputs