Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitris Menemenlis is active.

Publication


Featured researches published by Dimitris Menemenlis.


Global Biogeochemical Cycles | 2009

Oceanic sources, sinks, and transport of atmospheric CO2

Nicolas Gruber; Manuel Gloor; Sara E. Mikaloff Fletcher; Scott C. Doney; Stephanie Dutkiewicz; Michael J. Follows; Markus Gerber; Andrew R. Jacobson; Fortunat Joos; Keith Lindsay; Dimitris Menemenlis; Anne Mouchet; Simon A. Müller; Jorge L. Sarmiento; Taro Takahashi

We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.


Journal of Physical Oceanography | 2002

Effects of the Indonesian Throughflow on the Pacific and Indian Oceans

Tong Lee; Ichiro Fukumori; Dimitris Menemenlis; Zhangfan Xing; Lee-Lueng Fu

Abstract Effects of the Indonesian Throughflow (ITF) on the circulation and thermal structure of the Pacific and Indian Oceans are studied by comparing solutions of a near-global ocean general circulation model with open and closed Indonesian passages from 1981 to 1997. The ITF contributes to the maintenance of the model circulation system around eastern Australia and the southern Indian Ocean. Blockage of the ITF weakens the Indian Ocean South Equatorial Current and Agulhas Current and strengthens the East Australian Current. The ITF does not affect the Mindanao Current, but drains waters carried by this current into the Indian Ocean and thus reduces tropical–subtropical exchange in the North Pacific. Meanwhile, it helps maintain a stronger New Guinea Coastal Undercurrent and thus enhances tropical–subtropical exchange in the south. Water parcels traveling along the western boundary of the South Pacific cross the equator in the presence of the ITF but are confined to the Southern Hemisphere without the I...


Monthly Weather Review | 2005

Using Green's Functions to Calibrate an Ocean General Circulation Model

Dimitris Menemenlis; Ichiro Fukumori; Tong Lee

Abstract Greens functions provide a simple yet effective method to test and to calibrate general circulation model (GCM) parameterizations, to study and to quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products. The method is applied to an ocean GCM, resulting in substantial improvements of the solution relative to observations when compared to prior estimates: overall model bias and drift are reduced and there is a 10%–30% increase in explained variance. Within the context of this optimization, the following new estimates for commonly used ocean GCM parameters are obtained. Background vertical diffusivity is (15.1 ± 0.1) × 10−6 m2 s−2. Background vertical viscosity is (18 ± 3) × 10−6 m2 s−2. The critical bulk Richardson number, which sets boundary layer depth, is Ric = 0.354 ± 0.004. The threshold gradient Richardson number for shear instability vertical mixing is Ri0 = 0.699 ± 0.008. The estimated isopycnal diffusivity coeff...


Eos, Transactions American Geophysical Union | 2005

NASA supercomputer improves prospects for ocean climate research

Dimitris Menemenlis; Chris Hill; A. Adcrocft; J.-M. Campin; B. Cheng; B. Ciotti; Ichiro Fukumori; Patrick Heimbach; C. Henze; Armin Köhl; Tong Lee; Detlef Stammer; J. Taft; Jinlun Zhang

Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al., 2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries, the offshore oil industry coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.


Annals of Glaciology | 2012

Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge

Yun Xu; Eric Rignot; Dimitris Menemenlis; Michele N. Koppes

Abstract The largest dischargers of ice in Greenland are glaciers that terminate in the ocean and melt in contact with sea water. Studies of ice-sheet/ocean interactions have mostly focused on melting beneath near-horizontal floating ice shelves. For tidewater glaciers, melting instead takes place along the vertical face of the calving front. Here we modify the Massachusetts Institute of Technology general circulation model (MITgcm) to include ice melting from a calving face with the freshwater outflow at the glacier grounding line. We use the model to predict melt rates and their sensitivity to ocean thermal forcing and to subglacial discharge. We find that melt rates increase with approximately the one-third power of the subglacial water flux, and increase linearly with ocean thermal forcing. Our simulations indicate that, consistent with limited field data, melting ceases when subglacial discharge is shut off, and reaches several meters per day when subglacial discharge is high in the summer. These results are a first step toward a more realistic representation of subglacial discharge and of ocean thermal forcing on the subaqueous melting of tidewater glaciers in a numerical ocean model. Our results illustrate that the ice-front melting process is both complex and strongly time-dependent.


Annals of Glaciology | 2012

Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica

Michael Schodlok; Dimitris Menemenlis; Eric Rignot; Michael Studinger

Abstract Two high-resolution (1 km grid) numerical model simulations of the Amundsen Sea, West Antarctica, are used to study the role of the ocean in the mass loss and grounding line retreat of Pine Island Glacier. The first simulation uses BEDMAP bathymetry under the Pine Island ice shelf, and the second simulation uses NASA IceBridge-derived bathymetry. The IceBridge data reveal the existence of a trough from the ice-shelf edge to the grounding line, enabling warm Circumpolar Deep Water to penetrate to the grounding line, leading to higher melt rates than previously estimated. The mean melt rate for the simulation with NASA IceBridge data is 28 ma–1, much higher than previous model estimates but closer to estimates from remote sensing. Although the mean melt rate is 25% higher than in the simulation with BEDMAP bathymetry, the temporal evolution remains unchanged between the two simulations. This indicates that temporal variability of melting is mostly driven by processes outside the cavity. Spatial melt rate patterns of BEDMAP and IceBridge simulations differ significantly, with the latter in closer agreement with satellite-derived melt rate estimates of ~50ma–1 near the grounding line. Our simulations confirm that knowledge of the cavity shape and its time evolution are essential to accurately capture basal mass loss of Antarctic ice shelves.


Journal of Geophysical Research | 2004

Atmospheric and oceanic excitation of length-of-day variations during 1980-2000

Richard S. Gross; Ichiro Fukumori; Dimitris Menemenlis; Pascal Gegout

[1] Although nontidal changes in the Earth’s length-of-day on timescales of a few days to a few years are primarily caused by changes in the angular momentum of the zonal winds, other processes can be expected to cause the length-of-day to change as well. Here the relative contribution of upper atmospheric winds, surface pressure, oceanic currents, and ocean-bottom pressure to changing the length-of-day during 1980–2000 is evaluated using estimates of atmospheric angular momentum from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis project, estimates of the angular momentum of the zonal winds in the upper atmosphere from the United Kingdom Meteorological Office, and estimates of oceanic angular momentum from the Estimating the Circulation and Climate of the Ocean consortium’s simulation of the general circulation of the oceans. On intraseasonal timescales, atmospheric surface pressure, oceanic currents, and ocean-bottom pressure are found to be about equally important in causing the length-of-day to change, while upper atmospheric winds are found to be less important than these mechanisms. On seasonal timescales, the upper atmospheric winds are more important than the sum of currents and bottom pressure in causing the length-of-day to change and, except at the annual frequency, are even more important than surface pressure changes. On interannual timescales, oceanic currents and ocean-bottom pressure are found to be only marginally effective in causing the length-ofday to change. INDEX TERMS: 1223 Geodesy and Gravity: Ocean/Earth/atmosphere interactions (3339); 1239 Geodesy and Gravity: Rotational variations; 3319 Meteorology and Atmospheric Dynamics: General circulation; 4532 Oceanography: Physical: General circulation; KEYWORDS: Earth rotation, length-ofday, oceanic angular momentum


Annals of Glaciology | 2012

Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration

Eric Rignot; I. Fenty; Dimitris Menemenlis; Y. Xu

Abstract We examine the pattern of spreading of warm subtropical-origin waters around Greenland for the years 1992–2009 using a high-resolution (4km horizontal grid) coupled ocean and sea-ice simulation. The simulation, provided by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, qualitatively reproduces the observed warming of subsurface waters in the subpolar gyre associated with changes of the North Atlantic atmospheric state that occurred in the mid-1990s. The modeled subsurface ocean temperature warmed by 1.5˚C in southeast and southwest Greenland during 1994–2005 and subsequently cooled by 0.5˚C; modeled subsurface ocean temperature increased by 2–2.5˚C in central and then northwest Greenland during 1997–2005 and stabilized thereafter, while it increased after 2005 by <0.5˚C in north Greenland. Comparisons with in situ measurements off the continental shelf in the Labrador and Irminger Seas indicate that the model initial conditions were 0.4˚C too warm in the south but the simulated warming is correctly reproduced; while measurements from eastern Baffin Bay reveal that the model initial conditions were 1.0˚C too cold in the northwest but the simulated ocean warming brought modeled temperature closer to observations, i.e. the simulated warming is 1.0˚C too large. At several key locations, the modeled oceanic changes off the shelf and below the seasonal mixed layer were rapidly transmitted to the shelf within troughs towards (model-unresolved) fjords. Unless blocked in the fjords by shallow sills, these warm subsurface waters had potential to propagate down the fjords and melt the glacier fronts. Based on model sensitivity simulations from an independent study (Xu and others, 2012), we show that the oceanic changes have very likely increased the subaqueous melt rates of the glacier fronts, and in turn impacted the rates of glacier flow.


IEEE Journal of Oceanic Engineering | 1999

Multimegameter-range acoustic data obtained by bottom-mounted hydrophone arrays for measurement of ocean temperature

Brian D. Dushaw; Bruce M. Howe; James A. Mercer; Robert C. Spindel; Arthur B. Baggeroer; Dimitris Menemenlis; Carl Wunsch; Theodore G. Birdsall; Kurt Metzger; C. Clark; John A. Colosi; B.D. Comuelle; M. A. Dzieciuch; Walter Munk; Peter F. Worcester; Daniel P. Costa; Andrew M. G. Forbes

Acoustic signals transmitted from the ATOC source on Pioneer Seamount off the coast of California have been received at various sites around the Pacific Basin since January 1996. We describe data obtained using bottom-mounted receivers, including US Navy Sound Surveillance System arrays, at ranges up to 5 Mm from the Pioneer Seamount source. Stable identifiable ray arrivals are observed in several cases, but some receiving arrays are not well suited to detecting the direct ray arrivals. At 5-Mm range, travel-time variations at tidal frequencies (about 50 ms peak to peak) agree well with predicted values, providing verification of the acoustic measurements as well as the tidal model. On the longest and northernmost acoustic paths, the time series of resolved ray travel times show an annual cycle peak-to-peak variation of about 1 s and other fluctuations caused by natural oceanic variability. An annual cycle is not evident in travel times from shorter acoustic paths in the eastern Pacific, though only one realization of the annual cycle is available. The low-pass-filtered travel times are estimated to an accuracy of about 10 ms. This travel-time uncertainty corresponds to errors in range- and depth-averaged temperature of only a few millidegrees, while the annual peak-to-peak variation in temperature averaged horizontally over the acoustic path and vertically over the upper 1 km of ocean is up to 0.5/spl deg/C.


Global Biogeochemical Cycles | 2009

Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean

Manfredi Manizza; Michael J. Follows; Stephanie Dutkiewicz; James W. McClelland; Dimitris Menemenlis; Colin Hill; Amy Townsend-Small; Bruce J. Peterson

Received 8 October 2008; revised 5 June 2009; accepted 12 June 2009; published 7 October 2009. [1] The spatial distribution and fate of riverine dissolved organic carbon (DOC) in the Arctic may be significant for the regional carbon cycle but are difficult to fully characterize using the sparse observations alone. Numerical models of the circulation and biogeochemical cycles of the region can help to interpret and extrapolate the data and may ultimately be applied in global change sensitivity studies. Here we develop and explore a regional, three-dimensional model of the Arctic Ocean in which, for the first time, we explicitly represent the sources of riverine DOC with seasonal discharge based on climatological field estimates. Through a suite of numerical experiments, we explore the distribution of DOC-like tracers with realistic riverine sources and a simple linear decay to represent remineralization through microbial degradation. The model reproduces the slope of the DOC-salinity relationship observed in the eastern and western Arctic basins when the DOC tracer lifetime is about 10 years, consistent with published inferences from field data. The new empirical parameterization of riverine DOC and the regional circulation and biogeochemical model provide new tools for application in both regional and global change studies.

Collaboration


Dive into the Dimitris Menemenlis's collaboration.

Top Co-Authors

Avatar

Ichiro Fukumori

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eric Rignot

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kwok

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bruce M. Howe

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Chris Hill

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Munk

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge