Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimos Gaidatzis is active.

Publication


Featured researches published by Dimos Gaidatzis.


Nature | 2006

A novel class of small RNAs bind to MILI protein in mouse testes.

Alexei A. Aravin; Dimos Gaidatzis; Sébastien Pfeffer; Mariana Lagos-Quintana; Pablo Landgraf; Nicola Iovino; Patricia L. Morris; Michael J. Brownstein; Satomi Kuramochi-Miyagawa; Toru Nakano; Minchen Chien; James J. Russo; Jingyue Ju; Robert L. Sheridan; Chris Sander; Mihaela Zavolan; Thomas Tuschl

Small RNAs bound to Argonaute proteins recognize partially or fully complementary nucleic acid targets in diverse gene-silencing processes. A subgroup of the Argonaute proteins—known as the ‘Piwi family’—is required for germ- and stem-cell development in invertebrates, and two Piwi members—MILI and MIWI—are essential for spermatogenesis in mouse. Here we describe a new class of small RNAs that bind to MILI in mouse male germ cells, where they accumulate at the onset of meiosis. The sequences of the over 1,000 identified unique molecules share a strong preference for a 5′ uridine, but otherwise cannot be readily classified into sequence families. Genomic mapping of these small RNAs reveals a limited number of clusters, suggesting that these RNAs are processed from long primary transcripts. The small RNAs are 26–31 nucleotides (nt) in length—clearly distinct from the 21–23 nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)—and we refer to them as ‘Piwi-interacting RNAs’ or piRNAs. Orthologous human chromosomal regions also give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences are distinct. The identification of this new class of small RNAs provides an important starting point to determine the molecular function of Piwi proteins in mammalian spermatogenesis.


Nature | 2011

DNA-binding factors shape the mouse methylome at distal regulatory regions

Michael B. Stadler; Rabih Murr; Lukas Burger; Robert Ivanek; Florian Lienert; Anne Schöler; Erik van Nimwegen; Christiane Wirbelauer; Dimos Gaidatzis; Vijay K. Tiwari; Dirk Schübeler

Methylation of cytosines is an essential epigenetic modification in mammalian genomes, yet the rules that govern methylation patterns remain largely elusive. To gain insights into this process, we generated base-pair-resolution mouse methylomes in stem cells and neuronal progenitors. Advanced quantitative analysis identified low-methylated regions (LMRs) with an average methylation of 30%. These represent CpG-poor distal regulatory regions as evidenced by location, DNase I hypersensitivity, presence of enhancer chromatin marks and enhancer activity in reporter assays. LMRs are occupied by DNA-binding factors and their binding is necessary and sufficient to create LMRs. A comparison of neuronal and stem-cell methylomes confirms this dependency, as cell-type-specific LMRs are occupied by cell-type-specific transcription factors. This study provides methylome references for the mouse and shows that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions.


Nature Structural & Molecular Biology | 2008

MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.

Lasse Sinkkonen; Tabea Hugenschmidt; Philipp Berninger; Dimos Gaidatzis; Fabio Mohn; Caroline G Artus-Revel; Mihaela Zavolan; Petr Svoboda; Witold Filipowicz

Loss of microRNA (miRNA) pathway components negatively affects differentiation of embryonic stem (ES) cells, but the underlying molecular mechanisms remain poorly defined. Here we characterize changes in mouse ES cells lacking Dicer (Dicer1). Transcriptome analysis of Dicer−/− cells indicates that the ES-specific miR-290 cluster has an important regulatory function in undifferentiated ES cells. Consistently, many of the defects in Dicer-deficient cells can be reversed by transfection with miR-290 family miRNAs. We demonstrate that Oct4 (also known as Pou5f1) silencing in differentiating Dicer−/− ES cells is accompanied by accumulation of repressive histone marks but not by DNA methylation, which prevents the stable repression of Oct4. The methylation defect correlates with downregulation of de novo DNA methyltransferases (Dnmts). The downregulation is mediated by Rbl2 and possibly other transcriptional repressors, potential direct targets of miR-290 cluster miRNAs. The defective DNA methylation can be rescued by ectopic expression of de novo Dnmts or by transfection of the miR-290 cluster miRNAs, indicating that de novo DNA methylation in ES cells is controlled by miRNAs.


RNA | 2008

Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs

Markus Landthaler; Dimos Gaidatzis; Andrea Rothballer; Po Yu Chen; Steven Joseph Soll; Lana Dinic; Tolulope Ojo; Markus Hafner; Mihaela Zavolan; Thomas Tuschl

microRNAs (miRNAs) regulate the expression of mRNAs in animals and plants through miRNA-containing ribonucleoprotein particles (RNPs). At the core of these miRNA silencing effector complexes are the Argonaute (AGO) proteins that bind miRNAs and mediate target mRNA recognition. We generated HEK293 cell lines stably expressing epitope-tagged human AGO proteins and other RNA silencing-related proteins and used these cells to purify miRNA-containing RNPs. Mass spectrometric analyses of the proteins associated with different AGO proteins revealed a common set of helicases and mRNA-binding proteins, among them the three trinucleotide repeat containing proteins 6 (TNRC6A,-B,-C). mRNA microarray analyses of these miRNA-associated RNPs revealed that AGO and TNRC6 proteins bind highly similar sets of transcripts enriched in binding sites for highly expressed endogenous miRNAs, indicating that the TNRC6 proteins are a component of the mRNA-targeting miRNA silencing complex. Together with the very similar proteomic composition of each AGO complex, this result suggests substantial functional redundancy within families of human AGO and TNRC6 proteins. Our results further demonstrate that we have developed an effective biochemical approach to identify physiologically relevant human miRNA targets.


Cell | 2012

Step-Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery

Benjamin D. Towbin; Cristina González-Aguilera; Ragna Sack; Dimos Gaidatzis; Véronique Kalck; Peter Meister; Peter Askjaer; Susan M. Gasser

The factors that sequester transcriptionally repressed heterochromatin at the nuclear periphery are currently unknown. In a genome-wide RNAi screen, we found that depletion of S-adenosylmethionine (SAM) synthetase reduces histone methylation globally and causes derepression and release of heterochromatin from the nuclear periphery in Caenorhabditis elegans embryos. Analysis of histone methyltransferases (HMTs) showed that elimination of two HMTs, MET-2 and SET-25, mimics the loss of SAM synthetase, abrogating the perinuclear attachment of heterochromatic transgenes and of native chromosomal arms rich in histone H3 lysine 9 methylation. The two HMTs target H3K9 in a consecutive fashion: MET-2, a SETDB1 homolog, mediates mono- and dimethylation, and SET-25, a previously uncharacterized HMT, deposits H3K9me3. SET-25 colocalizes with its own product in perinuclear foci, in a manner dependent on H3K9me3, but not on its catalytic domain. This colocalization suggests an autonomous, self-reinforcing mechanism for the establishment and propagation of repeat-rich heterochromatin.


PLOS Genetics | 2013

Transcription Factor Occupancy Can Mediate Active Turnover of DNA Methylation at Regulatory Regions

Angelika Feldmann; Robert Ivanek; Rabih Murr; Dimos Gaidatzis; Lukas Burger; Dirk Schübeler

Distal regulatory elements, including enhancers, play a critical role in regulating gene activity. Transcription factor binding to these elements correlates with Low Methylated Regions (LMRs) in a process that is poorly understood. Here we ask whether and how actual occupancy of DNA-binding factors is linked to DNA methylation at the level of individual molecules. Using CTCF as an example, we observe that frequency of binding correlates with the likelihood of a demethylated state and sites of low occupancy display heterogeneous DNA methylation within the CTCF motif. In line with a dynamic model of binding and DNA methylation turnover, we find that 5-hydroxymethylcytosine (5hmC), formed as an intermediate state of active demethylation, is enriched at LMRs in stem and somatic cells. Moreover, a significant fraction of changes in 5hmC during differentiation occurs at these regions, suggesting that transcription factor activity could be a key driver for active demethylation. Since deletion of CTCF is lethal for embryonic stem cells, we used genetic deletion of REST as another DNA-binding factor implicated in LMR formation to test this hypothesis. The absence of REST leads to a decrease of hydroxymethylation and a concomitant increase of DNA methylation at its binding sites. These data support a model where DNA-binding factors can mediate turnover of DNA methylation as an integral part of maintenance and reprogramming of regulatory regions.


PLOS Genetics | 2011

Genomic Prevalence of Heterochromatic H3K9me2 and Transcription Do Not Discriminate Pluripotent from Terminally Differentiated Cells

Florian Lienert; Fabio Mohn; Vijay K. Tiwari; Tuncay Baubec; Tim Roloff; Dimos Gaidatzis; Michael B. Stadler; Dirk Schübeler

Cellular differentiation entails reprogramming of the transcriptome from a pluripotent to a unipotent fate. This process was suggested to coincide with a global increase of repressive heterochromatin, which results in a reduction of transcriptional plasticity and potential. Here we report the dynamics of the transcriptome and an abundant heterochromatic histone modification, dimethylation of histone H3 at lysine 9 (H3K9me2), during neuronal differentiation of embryonic stem cells. In contrast to the prevailing model, we find H3K9me2 to occupy over 50% of chromosomal regions already in stem cells. Marked are most genomic regions that are devoid of transcription and a subgroup of histone modifications. Importantly, no global increase occurs during differentiation, but discrete local changes of H3K9me2 particularly at genic regions can be detected. Mirroring the cell fate change, many genes show altered expression upon differentiation. Quantitative sequencing of transcripts demonstrates however that the total number of active genes is equal between stem cells and several tested differentiated cell types. Together, these findings reveal high prevalence of a heterochromatic mark in stem cells and challenge the model of low abundance of epigenetic repression and resulting global basal level transcription in stem cells. This suggests that cellular differentiation entails local rather than global changes in epigenetic repression and transcriptional activity.


Developmental Cell | 2010

Nuclear Retention of Fission Yeast Dicer Is a Prerequisite for RNAi-Mediated Heterochromatin Assembly

Stephan Emmerth; Heiko Schober; Dimos Gaidatzis; Tim Roloff; Kirsten Jacobeit; Marc Bühler

RNaseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNaseIII enzyme Dcr1 and are required for heterochromatin formation at centromeres. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif that impedes nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that Dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted toward either compartment.


The EMBO Journal | 2011

A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1.

Jane E. Wright; Dimos Gaidatzis; Mathias Senften; Brian M. Farley; Eric Westhof; Sean P. Ryder; Rafal Ciosk

RNA‐binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP‐mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD‐1, which is a key regulator of germ cell development. To obtain a comprehensive picture of GLD‐1 interactions with the transcriptome, we identified GLD‐1‐associated mRNAs by RNA immunoprecipitation followed by microarray detection. Based on the computational analysis of these mRNAs we generated a predictive model, where GLD‐1 association with mRNA is determined by the strength and number of 7‐mer GLD‐1‐binding motifs (GBMs) within UTRs. We verified this quantitative model both in vitro, by competition GLD‐1/GBM‐binding experiments to determine relative affinity, and in vivo, by ‘transplantation’ experiments, where ‘weak’ and ‘strong’ GBMs imposed translational repression of increasing strength on a non‐target mRNA. This study demonstrates that transcriptome‐wide identification of RBP mRNA targets combined with quantitative computational analysis can generate highly predictive models of post‐transcriptional regulatory networks.


Nucleic Acids Research | 2013

Identification of active regulatory regions from DNA methylation data

Lukas Burger; Dimos Gaidatzis; Dirk Schübeler; Michael B. Stadler

We have recently shown that transcription factor binding leads to defined reduction in DNA methylation, allowing for the identification of active regulatory regions from high-resolution methylomes. Here, we present MethylSeekR, a computational tool to accurately identify such footprints from bisulfite-sequencing data. Applying our method to a large number of published human methylomes, we demonstrate its broad applicability and generalize our previous findings from a neuronal differentiation system to many cell types and tissues. MethylSeekR is available as an R package at www.bioconductor.org.

Collaboration


Dive into the Dimos Gaidatzis's collaboration.

Top Co-Authors

Avatar

Michael B. Stadler

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Dirk Schübeler

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas Burger

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Rafal Ciosk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Schöler

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Helge Großhans

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Pooja Kumari

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge