Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihaela Zavolan is active.

Publication


Featured researches published by Mihaela Zavolan.


Cell | 2007

A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

Pablo Landgraf; Mirabela Rusu; Robert L. Sheridan; Alain Sewer; Nicola Iovino; Alexei A. Aravin; Sébastien Pfeffer; Amanda Rice; Alice O. Kamphorst; Markus Landthaler; Carolina Lin; Nicholas D. Socci; Leandro C. Hermida; Valerio Fulci; Sabina Chiaretti; Robin Foà; Julia Schliwka; Uta Fuchs; Astrid Novosel; Roman Ulrich Müller; Bernhard Schermer; Ute Bissels; Jason M. Inman; Quang Phan; Minchen Chien; David B. Weir; Ruchi Choksi; Gabriella De Vita; Daniela Frezzetti; Hans Ingo Trompeter

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units, and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses.


Cell | 2010

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP

Markus Hafner; Markus Landthaler; Lukas Burger; Mohsen Khorshid; Jean Hausser; Philipp Berninger; Andrea Rothballer; Manuel Ascano; Anna-Carina Jungkamp; Mathias Munschauer; Alexander Ulrich; Greg Wardle; Scott Dewell; Mihaela Zavolan; Thomas Tuschl

RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.


Nature Methods | 2005

Identification of microRNAs of the herpesvirus family

Sébastien Pfeffer; Alain Sewer; Mariana Lagos-Quintana; Robert L. Sheridan; Chris Sander; Friedrich A. Grässer; Linda F. van Dyk; C. Kiong Ho; Stewart Shuman; Minchen Chien; James J. Russo; Jingyue Ju; Glenn Randall; Brett D. Lindenbach; Charles M. Rice; Viviana Simon; David D. Ho; Mihaela Zavolan; Thomas Tuschl

Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma–associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses.


Nature | 2006

A novel class of small RNAs bind to MILI protein in mouse testes.

Alexei A. Aravin; Dimos Gaidatzis; Sébastien Pfeffer; Mariana Lagos-Quintana; Pablo Landgraf; Nicola Iovino; Patricia L. Morris; Michael J. Brownstein; Satomi Kuramochi-Miyagawa; Toru Nakano; Minchen Chien; James J. Russo; Jingyue Ju; Robert L. Sheridan; Chris Sander; Mihaela Zavolan; Thomas Tuschl

Small RNAs bound to Argonaute proteins recognize partially or fully complementary nucleic acid targets in diverse gene-silencing processes. A subgroup of the Argonaute proteins—known as the ‘Piwi family’—is required for germ- and stem-cell development in invertebrates, and two Piwi members—MILI and MIWI—are essential for spermatogenesis in mouse. Here we describe a new class of small RNAs that bind to MILI in mouse male germ cells, where they accumulate at the onset of meiosis. The sequences of the over 1,000 identified unique molecules share a strong preference for a 5′ uridine, but otherwise cannot be readily classified into sequence families. Genomic mapping of these small RNAs reveals a limited number of clusters, suggesting that these RNAs are processed from long primary transcripts. The small RNAs are 26–31 nucleotides (nt) in length—clearly distinct from the 21–23 nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)—and we refer to them as ‘Piwi-interacting RNAs’ or piRNAs. Orthologous human chromosomal regions also give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences are distinct. The identification of this new class of small RNAs provides an important starting point to determine the molecular function of Piwi proteins in mammalian spermatogenesis.


Developmental Cell | 2003

The small RNA profile during Drosophila melanogaster development

Alexei A. Aravin; Mariana Lagos-Quintana; Abdullah Yalcin; Mihaela Zavolan; Debora Marks; Ben Snyder; Terry Gaasterland; Jutta Meyer; Thomas Tuschl

Small RNAs ranging in size between 20 and 30 nucleotides are involved in different types of regulation of gene expression including mRNA degradation, translational repression, and chromatin modification. Here we describe the small RNA profile of Drosophila melanogaster as a function of development. We have cloned and sequenced over 4000 small RNAs, 560 of which have the characteristics of RNase III cleavage products. A nonredundant set of 62 miRNAs was identified. We also isolated 178 repeat-associated small interfering RNAs (rasiRNAs), which are cognate to transposable elements, satellite and microsatellite DNA, and Suppressor of Stellate repeats, suggesting that small RNAs participate in defining chromatin structure. rasiRNAs are most abundant in testes and early embryos, where regulation of transposon activity is critical and dramatic changes in heterochromatin structure occur.


Nature | 2011

MicroRNAs 103 and 107 regulate insulin sensitivity

Mirko Trajkovski; Jean Hausser; Jiirgen Soutschek; Bal Bhat; Akinc Akin; Mihaela Zavolan; Markus H. Heim; Markus Stoffel

Defects in insulin signalling are among the most common and earliest defects that predispose an individual to the development of type 2 diabetes. MicroRNAs have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism. However, the direct regulation of insulin sensitivity by microRNAs in vivo has not been demonstrated. Here we show that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice. Silencing of miR-103/107 leads to improved glucose homeostasis and insulin sensitivity. In contrast, gain of miR-103/107 function in either liver or fat is sufficient to induce impaired glucose homeostasis. We identify caveolin-1, a critical regulator of the insulin receptor, as a direct target gene of miR-103/107. We demonstrate that caveolin-1 is upregulated upon miR-103/107 inactivation in adipocytes and that this is concomitant with stabilization of the insulin receptor, enhanced insulin signalling, decreased adipocyte size and enhanced insulin-stimulated glucose uptake. These findings demonstrate the central importance of miR-103/107 to insulin sensitivity and identify a new target for the treatment of type 2 diabetes and obesity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cellular cofactors affecting hepatitis C virus infection and replication

Glenn Randall; Maryline Panis; Jacob D. Cooper; Timothy L. Tellinghuisen; Karen E. Sukhodolets; Sébastien Pfeffer; Markus Landthaler; Pablo Landgraf; Sherry Kan; Brett D. Lindenbach; Minchen Chien; David B. Weir; James J. Russo; Jingyue Ju; Michael J. Brownstein; Robert L. Sheridan; Chris Sander; Mihaela Zavolan; Thomas Tuschl; Charles M. Rice

Recently identified hepatitis C virus (HCV) isolates that are infectious in cell culture provide a genetic system to evaluate the significance of virus–host interactions for HCV replication. We have completed a systematic RNAi screen wherein siRNAs were designed that target 62 host genes encoding proteins that physically interact with HCV RNA or proteins or belong to cellular pathways thought to modulate HCV infection. This includes 10 host proteins that we identify in this study to bind HCV NS5A. siRNAs that target 26 of these host genes alter infectious HCV production >3-fold. Included in this set of 26 were siRNAs that target Dicer, a principal component of the RNAi silencing pathway. Contrary to the hypothesis that RNAi is an antiviral pathway in mammals, as has been reported for subgenomic HCV replicons, siRNAs that target Dicer inhibited HCV replication. Furthermore, siRNAs that target several other components of the RNAi pathway also inhibit HCV replication. MicroRNA profiling of human liver, human hepatoma Huh-7.5 cells, and Huh-7.5 cells that harbor replicating HCV demonstrated that miR-122 is the predominant microRNA in each environment. miR-122 has been previously implicated in positively regulating the replication of HCV genotype 1 replicons. We find that 2′-O-methyl antisense oligonucleotide depletion of miR-122 also inhibits HCV genotype 2a replication and infectious virus production. Our data define 26 host genes that modulate HCV infection and indicate that the requirement for functional RNAi for HCV replication is dominant over any antiviral activity this pathway may exert against HCV.


Proceedings of the National Academy of Sciences of the United States of America | 2009

miR-375 maintains normal pancreatic alpha- and beta-cell mass.

Matthew N. Poy; Jean Hausser; Mirko Trajkovski; Matthias Braun; Stephan C. Collins; Patrik Rorsman; Mihaela Zavolan; Markus Stoffel

Altered growth and development of the endocrine pancreas is a frequent cause of the hyperglycemia associated with diabetes. Here we show that microRNA-375 (miR-375), which is highly expressed in pancreatic islets, is required for normal glucose homeostasis. Mice lacking miR-375 (375KO) are hyperglycemic, exhibit increased total pancreatic α-cell numbers, fasting and fed plasma glucagon levels, and increased gluconeogenesis and hepatic glucose output. Furthermore, pancreatic β-cell mass is decreased in 375KO mice as a result of impaired proliferation. In contrast, pancreatic islets of obese mice (ob/ob), a model of increased β-cell mass, exhibit increased expression of miR-375. Genetic deletion of miR-375 from these animals (375/ob) profoundly diminished the proliferative capacity of the endocrine pancreas and resulted in a severely diabetic state. Bioinformatic analysis of transcript data from 375KO islets revealed that miR-375 regulates a cluster of genes controlling cellular growth and proliferation. These data provide evidence that miR-375 is essential for normal glucose homeostasis, α- and β-cell turnover, and adaptive β-cell expansion in response to increasing insulin demand in insulin resistance.


Nature Structural & Molecular Biology | 2008

MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.

Lasse Sinkkonen; Tabea Hugenschmidt; Philipp Berninger; Dimos Gaidatzis; Fabio Mohn; Caroline G Artus-Revel; Mihaela Zavolan; Petr Svoboda; Witold Filipowicz

Loss of microRNA (miRNA) pathway components negatively affects differentiation of embryonic stem (ES) cells, but the underlying molecular mechanisms remain poorly defined. Here we characterize changes in mouse ES cells lacking Dicer (Dicer1). Transcriptome analysis of Dicer−/− cells indicates that the ES-specific miR-290 cluster has an important regulatory function in undifferentiated ES cells. Consistently, many of the defects in Dicer-deficient cells can be reversed by transfection with miR-290 family miRNAs. We demonstrate that Oct4 (also known as Pou5f1) silencing in differentiating Dicer−/− ES cells is accompanied by accumulation of repressive histone marks but not by DNA methylation, which prevents the stable repression of Oct4. The methylation defect correlates with downregulation of de novo DNA methyltransferases (Dnmts). The downregulation is mediated by Rbl2 and possibly other transcriptional repressors, potential direct targets of miR-290 cluster miRNAs. The defective DNA methylation can be rescued by ectopic expression of de novo Dnmts or by transfection of the miR-290 cluster miRNAs, indicating that de novo DNA methylation in ES cells is controlled by miRNAs.


Nature Methods | 2011

A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins

Shivendra Kishore; Lukasz Jaskiewicz; Lukas Burger; Jean Hausser; Mohsen Khorshid; Mihaela Zavolan

Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside–enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link–induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.

Collaboration


Dive into the Mihaela Zavolan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Hausser

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Gruber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Landthaler

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimos Gaidatzis

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge