Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dinesh Yernool is active.

Publication


Featured researches published by Dinesh Yernool.


Nature | 2004

Structure of a glutamate transporter homologue from Pyrococcus horikoshii

Dinesh Yernool; Olga Boudker; Yan Jin; Eric Gouaux

Glutamate transporters are integral membrane proteins that catalyse the concentrative uptake of glutamate from the synapse to intracellular spaces by harnessing pre-existing ion gradients. In the central nervous system glutamate transporters are essential for normal development and function, and are implicated in stroke, epilepsy and neurodegenerative diseases. Here we present the crystal structure of a eukaryotic glutamate transporter homologue from Pyrococcus horikoshii. The transporter is a bowl-shaped trimer with a solvent-filled extracellular basin extending halfway across the membrane bilayer. At the bottom of the basin are three independent binding sites, each cradled by two helical hairpins, reaching from opposite sides of the membrane. We propose that transport of glutamate is achieved by movements of the hairpins that allow alternating access to either side of the membrane.


Nature | 2007

Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter

Olga Boudker; Renae M. Ryan; Dinesh Yernool; Keiko Shimamoto; Eric Gouaux

Secondary transporters are integral membrane proteins that catalyse the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of GltPh, a sodium (Na+)-coupled aspartate transporter, defining sites for aspartate, two sodium ions and d,l-threo-β-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound α-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.


Phytochemistry | 2008

Purification and characterization of a trypsin inhibitor from Putranjiva roxburghii seeds.

Navneet S. Chaudhary; Chandan Shee; Asimul Islam; Faizan Ahmad; Dinesh Yernool; Pravindra Kumar; Ashwani Kumar Sharma

A highly stable and potent trypsin inhibitor was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family by acid precipitation, cation-exchange and anion-exchange chromatography. SDS-PAGE analysis, under reducing condition, showed that protein consists of a single polypeptide chain with molecular mass of approximately 34 kDa. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.4x10(-11) M. The inhibitor retained the inhibitory activity over a broad range of pH (pH 2-12), temperature (20-80 degrees C) and in DTT (up to100 mM). The complete loss of inhibitory activity was observed above 90 degrees C. CD studies, at increasing temperatures, demonstrated the structural stability of inhibitor at high temperatures. The polypeptide backbone folding was retained up to 80 degrees C. The CD spectra of inhibitor at room temperature exhibited an alpha, beta pattern. N-terminal amino acid sequence of 10 residues did not show any similarities to known serine proteinase inhibitors, however, two peptides obtained by internal partial sequencing showed significant resemblance to Kunitz-type inhibitors.


Nature Communications | 2014

An asymmetric heterodomain interface stabilizes a response regulator-DNA complex.

Anoop Narayanan; Shivesh Kumar; Amanda N. Evrard; Lake N. Paul; Dinesh Yernool

Two-component signal transduction systems consist of pairs of histidine kinases and response regulators, which mediate adaptive responses to environmental cues. Most activated response regulators regulate transcription by binding tightly to promoter DNA via a phosphorylation-triggered inactive-to-active transition. The molecular basis for formation of stable response regulator-DNA complexes that precede the assembly of RNA polymerases is unclear. Here, we present structures of DNA complexed with the response regulator KdpE, a member of the OmpR/PhoB family. The distinctively asymmetric complex in an active-like conformation reveals a unique intramolecular interface between the receiver domain (RD) and the DNA-binding domain (DBD) of only one of the two response regulators in the complex. Structure-function studies show that this RD-DBD interface is necessary to form stable complexes that support gene expression. The conservation of sequence and structure suggests that these findings extend to a large group of response regulators that act as transcription factors.


Protein Science | 2011

Restrained expression, a method to overproduce toxic membrane proteins by exploiting operator-repressor interactions.

Anoop Narayanan; Marc Ridilla; Dinesh Yernool

A major rate‐limiting step in determining structures of membrane proteins is heterologous protein production. Toxicity often associated with rapid overexpression results in reduced biomass along with low yields of target protein. Mitigation of toxic effects was achieved using a method we call “restrained expression,” a controlled reduction in the frequency of transcription initiation by exploiting the infrequent transitions of Lac repressor to a free state from its complex with the lac‐operator site within a T7lac promoter that occur in the absence of the inducer isopropyl β‐D‐1‐thiogalactopyranoside. In addition, production of the T7 RNA polymerase that drives transcription of the target is limited using the tightly regulated arabinose promoter in Escherichia coli strain BL21‐AI. Using this approach, we can achieve a 200‐fold range of green fluorescent protein expression levels. Application to members of a family of ion pumps results in 5‐ to 25‐fold increases in expression over the benchmark BL21(DE3) host strain. A viral ion channel highly toxic to E. coli can also be overexpressed. In comparative analyses, restrained expression outperforms commonly used E. coli expression strategies. The mechanism underlying improved target protein yield arises from minimization of protein aggregation and proteolysis that reduce membrane integrity and cell viability. This study establishes a method to overexpress toxic proteins.


PLOS ONE | 2012

Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

Anoop Narayanan; Lake N. Paul; Sakshi Tomar; Dipak N. Patil; Pravindra Kumar; Dinesh Yernool

Expression of KdpFABC, a K+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABCBS) via the winged helix-turn-helix type DNA binding domain (KdpEDBD). Exploration of E. coli KdpEDBD and kdpFABCBS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpEDBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpEDBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpEDBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.


Biochemical Journal | 2010

Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2.

Katrina L. Molland; Anoop Narayanan; John W. Burgner; Dinesh Yernool

Polycystin 2-type cation channels PKD2 and PKD2L1 interact with polycystin 1-type proteins PKD1 and PKD1L3 respectively, to form receptor-cation-channel complexes. The PKD2L1-PKD1L3 complex perceives sour taste, whereas disruption of the PKD2-PKD1 complex, responsible for mechanosensation, leads to development of ADPKD (autosomal-dominant polycystic kidney disease). Besides modulating channel activity and related signalling events, the CRDs (C-terminal regulatory domains) of PKD2 and PKD2L1 play a central role in channel oligomerization. The present study investigates the aggregation state of purified full-length PKD2L1-CRD as well as truncations of CRDs from PKD2 channels. Far- and near-UV CD spectroscopy show that the full-length PKD2L1 CRD (PKD2L1-198) and the truncated PKD2 CRD (PKD2-244) are alpha-helical with no beta-sheet, the alpha-helix content agrees with sequence-based predictions, and some of its aromatic residues are in an asymmetric environment created at least by partially structured regions. Additionally, the CRD truncations exhibit an expected biochemical function by binding Ca2+ in a physiologically relevant range with Kd values of 2.8 muM for PKD2-244 and 0.51 muM for PKD2L1-198. Complimentary biophysical and biochemical techniques establish that truncations of the PKD2 and PKD2L1 CRDs are elongated molecules that assemble as trimers, and the trimeric aggregation state is independent of Ca2+ binding. Finally, we show that a common coiled-coil motif is sufficient and necessary to drive oligomerization of the PKD2 and PKD2L1 CRD truncations under study. Despite the moderate sequence identity (39%) between CRDs of PKD2 and PKD2L1, they both form trimers, implying that trimeric organization of CRDs may be true of all polycystin channels.


Oncotarget | 2016

Optogenetic regulation of site-specific subtelomeric DNA-methylation

Samrat Roy Choudhury; Yi Cui; Anoop Narayanan; David Gilley; Nazmul Huda; Chiao Ling Lo; Feng C. Zhou; Dinesh Yernool; Joseph Irudayaraj

Telomere length homeostasis, critical for chromosomal integrity and genome stability, is controlled by intricate molecular regulatory machinery that includes epigenetic modifications. Here, we examine site-specific and spatiotemporal alteration of the subtelomeric methylation of CpG islands using optogenetic tools to understand the epigenetic regulatory mechanisms of telomere length maintenance. Human DNA methyltransferase3A (DNMT3A) were assembled selectively at chromosome ends by fusion to cryptochrome 2 protein (CRY2) and its interacting complement, the basic helix loop helix protein-1 (CIB1). CIB1 was fused to the telomere-associated protein telomere repeat binding factor-1 (TRF1), which localized the protein complex DNMT3A-CRY2 at telomeric regions upon excitation by blue-light monitored by single-molecule fluorescence analyses. Increased methylation was achieved selectively at subtelomeric CpG sites on the six examined chromosome ends specifically after blue-light activation, which resulted in progressive increase in telomere length over three generations of HeLa cell replications. The modular design of the fusion constructs presented here allows for the selective substitution of other chromatin modifying enzymes and for loci-specific targeting to regulate the epigenetic pathways at telomeres and other selected genomic regions of interest.


Biochemistry | 2012

Identification of the Dimer Interface of a Bacterial Ca2+/H+ Antiporter

Marc Ridilla; Anoop Narayanan; Jeffrey T. Bolin; Dinesh Yernool

Members of the calcium/cation antiporter superfamily, including the cardiac sodium/calcium exchangers, are secondary active transporters that play an essential role in cellular Ca(2+) homeostasis. A notable feature of this group of transporters is the high levels of sequence similarity in relatively short sequences constituting the functionally important α-1 and α-2 regions in contrast to relatively lower degrees of similarity in the extended adjoining sequences. This suggests a similar structure and function of core transport machinery but possible differences in topology and/or oligomerization, a topic that has not been adequately addressed. Here we present the first example of purification of a bacterial member of this superfamily (CAX(CK31)) and analyze its quaternary structure. Purification of CAX(CK31) required the presence of a choline headgroup-containing detergent or lipid to yield stable preparations of the monomeric transporter. H(+)-driven Ca(2+) transport was demonstrated by reconstituting purified CAX(CK31) into liposomes. Dimeric CAX(CK31) could be isolated by manipulation of detergent micelles. Dimer formation was shown to be dependent on micelle composition as well as protein concentration. Furthermore, we establish that CAX(CK31) forms dimers in the membrane by analysis of cross-linked proteins. Using a dimeric homology model derived from the monomeric structure of the archaeal NCX homologue (Protein Data Bank entry 3V5U ), we introduced cysteine residues and through cross-linking experiments established the role of transmembrane helices 2 and 6 in the putative dimer interface.


Protein and Peptide Letters | 2013

Purification and Biophysical Characterization of an 11S Globulin from Wrightia tinctoria Exhibiting Hemagglutinating Activity

Pramod Kumar; Dipak N. Patil; Anshul Chaudhary; Shailly Tomar; Dinesh Yernool; Nirpendra Singh; Pushpanjali Dasauni; Suman Kundu; Pravindra Kumar

Wrightia tinctoria globulin (WTG), one of the major seed storage proteins, was isolated for the first time from seeds of the medicinal plant. WTG was extracted and purified to homogeneity in two steps using anion-exchange and size-exclusion chromatographies. On an SDS-PAGE gel under non-reducing conditions, a major band of ~56 kDa was observed; under reducing conditions, however, two major polypeptides, one with molecular weight ~32-34 kDa and the other with molecular weight ~22-26 kDa were observed. Intact mass determination by MALDI-TOF supported this observation. The N-terminal amino acid sequence of WTG matched in NCBI database with an expressed sequence tag obtained from the c-DNA of developing embryo m-RNA of Wrightia tinctoria. The EST sequence was further substantiated by partial de novo internal sequencing using MALDI-TOF/TOF. The high sequence homology with seed storage protein 11S globulin confirmed that WTG is a type of 11S globulin. Circular dichroism analysis showed that the secondary structure of WTG consists predominantly of β-sheets (44.2%) and moderate content of α-helices (10.3%). WTG showed hemagglutinating property indicating that the protein may possess lectin-like activity. WTG was crystallized at 20 Å°C by the vapour diffusion method using PEG 400 as precipitant. The crystals belonged to the orthorhombic space group P212121 with cell dimensions of a=109.9Å, b=113.2Å and c=202.2Å with six molecules per asymmetric unit. Diffraction data were collected to a resolution of 2.2Å under cryocondition. Preliminary structure solution of WTG indicated the possibility of a hexameric assembly in its asymmetric unit.

Collaboration


Dive into the Dinesh Yernool's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pravindra Kumar

Indian Institute of Technology Roorkee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge