Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dipankar Chakraborti is active.

Publication


Featured researches published by Dipankar Chakraborti.


PLOS ONE | 2010

Primary Metabolism of Chickpea Is the Initial Target of Wound Inducing Early Sensed Fusarium oxysporum f. sp. ciceri Race I

Sumanti Gupta; Dipankar Chakraborti; Anindita Sengupta; Debabrata Basu; Sampa Das

Background Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species) generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. Methodology/Principal Findings Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. Conclusions/Significance The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s) played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms.


Plant Cell Reports | 2010

Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers

Subhadipa Sengupta; Dipankar Chakraborti; Hossain Ali Mondal; Sampa Das

Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T0 plants with ASAL- lox-hpt-lox T-DNA and three single-copy T0 plants with cre-bar T-DNA. Marker gene excisions were detected in T1 hybrids through hygromycin sensitivity assay. Molecular analysis of T1 plants exhibited 27.4% recombination efficiency. T2 progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T2 progeny plants. In planta bioassay of GLH and BPH performed on these T2 progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.


Plant Cell Reports | 2008

Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect

Dipankar Chakraborti; Anindya Sarkar; Hossain Ali Mondal; David Schuermann; Barbara Hohn; Bidyut Kumar Sarmah; Sampa Das

A binary expression vector was constructed containing the insecticidal gene Allium sativum leaf agglutinin (ASAL), and a selectable nptII marker gene cassette, flanked by lox sites. Similarly, another binary vector was developed with the chimeric cre gene construct. Transformed tobacco plants were generated with these two independent vectors. Each of the T0lox plants was crossed with T0 Cre plants. PCR analyses followed by the sequencing of the target T-DNA part of the hybrid T1 plants demonstrated the excision of the nptII gene in highly precised manner in certain percentage of the T1 hybrid lines. The frequency of such marker gene excision was calculated to be 19.2% in the hybrids. Marker free plants were able to express ASAL efficiently and reduce the survivability of Myzus persiceae, the deadly pest of tobacco significantly, compared to the control tobacco plants. Results of PCR and Southern blot analyses of some of the T2 plants detected the absence of cre as well as nptII genes. Thus, the crossing strategy involving Cre/lox system for the excision of marker genes appears to be very effective and easy to execute. Documentation of such marker excision phenomenon in the transgenic plants expressing the important insecticidal protein for the first time has a great significance from agricultural and biotechnological points of view.


Phytopathology | 2009

A Molecular Insight into the Early Events of Chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) Interaction Through cDNA-AFLP Analysis

Sumanti Gupta; Dipankar Chakraborti; Rumdeep K. Rangi; Debabrata Basu; Sampa Das

Wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris is one of the most severe diseases of chickpea throughout the world. Variability of pathotypes of F. oxysporum f. sp. ciceris and breakdown of natural resistance are the main hindrances to developing resistant plants by applying resistant breeding strategies. Additionally, lack of information of potential resistant genes limits gene-transfer technology. A thorough understanding of Fusarium spp.-chickpea interaction at a cellular and molecular level is essential for isolation of potential genes involved in counteracting disease progression. Experiments were designed to trigger the pathogen-challenged disease responses in both susceptible and resistant plants and monitor the expression of stress induced genes or gene fragments at the transcript level. cDNA amplified fragment length polymorphism followed by homology search helped in differentiating and analyzing the up- and downregulated gene fragments. Several detected DNA fragments appeared to have relevance with pathogen-mediated defense. Some of the important transcript-derived fragments were homologous to genes for sucrose synthase, isoflavonoid biosynthesis, drought stress response, serine threonine kinases, cystatins, arginase, and so on. Reverse-transcriptase polymerase chain reaction performed with samples collected at 48 and 96 h postinfection confirmed a similar type of differential expression pattern. Based on these results, interacting pathways of cellular processes were generated. This study has an implication toward functional identification of genes involved in wilt resistance.


BMC Genomics | 2014

Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1)

Moniya Chatterjee; Sumanti Gupta; Anirban Bhar; Dipankar Chakraborti; Debabrata Basu; Sampa Das

BackgroundVascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance.ResultsThe differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p < 0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes.ConclusionsThe differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening related protein and albumins are expected to serve as important molecular components for biotechnological application and development of sustainable resistance against Foc1.


BMC Biotechnology | 2013

Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination

Arpita Bala; Amit Roy; Ayan Das; Dipankar Chakraborti; Sampa Das

BackgroundAntibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype.ResultsAllium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding completely marker free plants.ConclusionsThe present study establishes the efficient expression of the newly introduced insect resistant ASAL gene even after Cre/lox mediated recombination resulting in elimination of selectable marker gene.


PLOS ONE | 2011

Allergenicity Assessment of Allium sativum Leaf Agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops

Hossain Ali Mondal; Dipankar Chakraborti; Pralay Majumder; Pampa Roy; Amit Roy; Swati Gupta Bhattacharya; Sampa Das

Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects.


Plant Signaling & Behavior | 2010

In search of decoy/guardee to R genes Deciphering the role of sugars in defense against Fusarium wilt in chickpea

Sumanti Gupta; Dipankar Chakraborti; Debabrata Basu; Sampa Das

Plant responses are coordinately controlled by both external and internal signals. Apt perception of pathogen attack and its appropriate conversion to internal signals ultimately determine the outcome of innate immunity. The present review predicts the involvement of unconventional ‘Guard/Decoy Model’ in chickpea-Fusarium encounter. Rapid alkalinization factor is predicted to act as initial ‘Gatekeeper decoy’ counteracting fungal entry. Phospholipases and cystatins probably function as ‘Guardees’ being shielded by R gene(s). Serine Threonine Kinases decodes external pathogenic signals to in planta defense alarms. 14.3.3 provides clues to the wilt mechanism. The versatile sugars serve as signal generators and transmitters maintaining intra and inter cellular connectivity during stress.


Plant Cell Reports | 2017

Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera

Gourab Ghosh; Shreeparna Ganguly; Arnab Purohit; Rituparna Kundu Chaudhuri; Sampa Das; Dipankar Chakraborti

Key messageIndependent transgenic pigeonpea events were developed using two cry genes. Transgenic Cry2Aa-pigeonpea was established for the first time. Selected transgenic events demonstrated 100% mortality of Helicoverpa armigera in successive generations.AbstractLepidopteran insect Helicoverpa armigera is the major yield constraint of food legume pigeonpea. The present study was aimed to develop H. armigera-resistant transgenic pigeonpea, selected on the basis of transgene expression and phenotyping. Agrobacterium tumefaciens-mediated transformation of embryonic axis explants of pigeonpea cv UPAS 120 was performed using two separate binary vectors carrying synthetic Bacillus thuringiensis insecticidal crystal protein genes, cry1Ac and cry2Aa. T0 transformants were selected on the basis of PCR and protein expression profile. T1 events were exclusively selected on the basis of expression and monogenic character for cry, validated through Western and Southern blot analyses, respectively. Independently transformed 12 Cry1Ac and 11 Cry2Aa single-copy events were developed. The level of Cry-protein expression in T1 transgenic events was 0.140–0.175% of total soluble protein. Expressed Cry1Ac and Cry2Aa proteins in transgenic pigeonpea exhibited significant weight loss of second–fourth instar larvae of H. armigera and ultimately 80–100% mortality in detached leaf bioassay. Selected Cry-transgenic pigeonpea events, established at T2 generation, inherited insect-resistant phenotype. Immunohistofluorescence localization in T3 plants demonstrated constitutive accumulation of Cry1Ac and Cry2Aa in leaf tissues of respective transgenic events. This study is the first report of transgenic pigeonpea development, where stable integration, effective expression and biological activity of two Cry proteins were demonstrated in subsequent three generations (T0, T1, and T2). These studies will contribute to biotechnological breeding programmes of pigeonpea for its genetic improvement.


Plant Cell Tissue and Organ Culture | 2018

Development of transgenic pigeonpea using high throughput plumular meristem transformation method

Shreeparna Ganguly; Gourab Ghosh; Arnab Purohit; Rituparna Kundu Chaudhuri; Dipankar Chakraborti

Tissue culture based poor regeneration along with restricted rooting responses are considered to be major hindrances for in vitro transgenic pigeonpea development. Present study was designed to establish a novel method of Agrobacterium tumefaciens mediated plumular meristem transformation in pigeonpea for improvement of transgenic development frequency. Three days old decapitated seedlings of pigeonpea cultivar ICPL 87119 were pricked at plumular meristem region under in vitro conditions. After infecting with Agrobacterium binary vector pBI121, the explants were co-cultivated in 6-benzylaminopurine and α-naphthaleneacetic acid supplemented modified- Murashige and Skoog medium. Transformed seedling with well-developed tap root system were established in soil. GUS activity as well as PCR based confirmation of transgene presence was demonstrated in transgenic events. Transformation frequency of 72% was achieved for the first time in pigeonpea. Further, kanamycin mediated stringent selection was used for the screening of T1 seeds. Established T1 progenies were analysed by PCR and Southern blot, to confirm transgene integration and copy number, respectively. This is the first report of transgenic pigeonpea development, where the combination of culture based Agrobacterium-infection and culture independent plant establishment, coupled with PCR based selection method was found to be most preferable for faster and frequent establishment of transgenic plants. This method will contribute to large scale transgenic pigeonpea development for its improvement and satisfy the requirement of routine transformation experiments for T-DNA insertion mutagenesis.

Collaboration


Dive into the Dipankar Chakraborti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge