Pralay Majumder
Bose Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pralay Majumder.
Cancer Letters | 2009
Jyoti Nautiyal; Pralay Majumder; Bhaumik B. Patel; Francis Y. Lee; Adhip P.N. Majumdar
EGF-receptor family members (EGFRs) as well as c-Src are over expressed in approximately 70% of breast cancer, and in most of the tumors c-Src is co-over expressed with at least one of the EGFRs, suggesting that they may interact functionally and play a role in the development and progression of the malignancy. We hypothesize that a small molecule inhibitor of c-Src dasatinib (BMS-354825; Bristol Myers Squibb), exerts its effects on breast cancer cells by modulating EGFR signaling. Indeed, we found that dasatinib causes inhibition of breast cancer cells overexpressing EGFR, HER-2 and HER-3 (MDA-MB-468, SKBR3, MDA-MB-453, and MDA-MB-231) in a dose and time-dependent manner. Dasatinib also stimulated apoptosis in MDA-MB-468 cells, which could be attributed to activation of both caspase-9 and -8 and arrest of the cell cycle at G0/G1 cycle. Furthermore, dasatinib markedly inhibited colony formation, cell invasion, migration and angiogenesis, accompanied by decreased phosphorylation of EGFR and c-Src and their downstream effector molecules Akt and Erks. Our data suggest that dasatinib mediates its action in part through EGFR signaling and could be a potential therapeutic agent for breast cancer.
Glycoconjugate Journal | 2003
Pralay Majumder; Santanu Banerjee; Sampa Das
The sap-sucking homopteran insects, commonly known as aphids and leafhoppers are responsible for a huge amount of lost productivity of mustard, chickpea, cabbage, rice and many other important crops. Due to their unique feeding habits and ability to build up a huge population in a very short time, they are very difficult to control. The objective of the ongoing program is to develop insect-resistant crop species through genetic engineering techniques to combat the yield losses, which necessitates the identification of appropriate control elements. In this direction, mannose-binding 25 kDa lectins have been purified from leaves of garlic, Diffenbachia sequina and tubers of Colocasia esculanta. The purified lectins have been analyzed in SDS-PAGE. The effectiveness of these lectins against chickpea aphids, mustard aphids and green leaf hoppers of rice have been tested. The LC50 value of each lectin against different insects had been monitored [1,2]. Through immunolocalization analysis, the binding of the lectin had been demonstrated at the epithelial membrane of the midgut of the lectin-treated insects [1]. Receptor proteins of brush border membrane vesicle (BBMV) of the target insects, responsible for binding of the lectin to the midgut of the epithelial layer have been purified and analyzed through ligand assay. Biochemical studies have been undertaken to investigate the lectin-receptor interaction at molecular level. Published in 2004..
Current Biology | 2012
Pralay Majumder; George Aranjuez; Joseph Amick; Jocelyn A. McDonald
BACKGROUND Localized actomyosin contraction couples with actin polymerization and cell-matrix adhesion to regulate cell protrusions and retract trailing edges of migrating cells. Although many cells migrate in collective groups during tissue morphogenesis, mechanisms that coordinate actomyosin dynamics in collective cell migration are poorly understood. Migration of Drosophila border cells, a genetically tractable model for collective cell migration, requires nonmuscle myosin-II (Myo-II). How Myo-II specifically controls border cell migration and how Myo-II is itself regulated is largely unknown. RESULTS We show that Myo-II regulates two essential features of border cell migration: (1) initial detachment of the border cell cluster from the follicular epithelium and (2) the dynamics of cellular protrusions. We further demonstrate that the cell polarity protein Par-1 (MARK), a serine-threonine kinase, regulates the localization and activation of Myo-II in border cells. Par-1 binds to myosin phosphatase and phosphorylates it at a known inactivating site. Par-1 thus promotes phosphorylated myosin regulatory light chain, thereby increasing Myo-II activity. Furthermore, Par-1 localizes to and increases active Myo-II at the cluster rear to promote detachment; in the absence of Par-1, spatially distinct active Myo-II is lost. CONCLUSIONS We identify a critical new role for Par-1 kinase: spatiotemporal regulation of Myo-II activity within the border cell cluster through localized inhibition of myosin phosphatase. Polarity proteins such as Par-1, which intrinsically localize, can thus directly modulate the actomyosin dynamics required for border cell detachment and migration. Such a link between polarity proteins and cytoskeletal dynamics may also occur in other collective cell migrations.
Molecular Cancer Therapeutics | 2007
Liyue Zhang; Edi Levi; Pralay Majumder; Yingjie Yu; Amro Aboukameel; Jianhua Du; Hu Xu; Ramzi M. Mohammad; James S. Hatfield; Anil Wali; Volkan Adsay; Adhip P.N. Majumdar; Arun K. Rishi
Deregulated signaling by the epidermal growth factor receptor family of proteins is encountered in human malignancies including breast cancer. Cell cycle and apoptosis-regulatory protein-1 (CARP-1), a novel, perinuclear phosphoprotein, is a regulator of apoptosis signaling by epidermal growth factor receptors. CARP-1 expression is diminished in human breast cancers, and correlates inversely with human breast cancer grades which could be attributed to increased methylation. The expression of CARP-1, on the other hand, interferes with the ability of human breast cancer cells to invade through the matrigel-coated membranes, to form colonies in the soft agar, and to grow as s.c. tumors in severe combined immunodeficiency (SCID) mice. To test whether CARP-1 is a suppressor of human breast cancer growth, we generated transactivator of transcription (TAT)–tagged CARP-1 peptides. Treatment of human breast cancer cells with affinity purified, TAT-CARP-1 1–198, 197–454, and 896–1150 peptides caused inhibition of human breast cancer cell proliferation and elevated apoptosis. In contrast, TAT-tagged enhanced green fluorescent protein or CARP-1 (1–198Y192/F) peptide failed to inhibit cell proliferation or induce apoptosis. Apoptosis by CARP-1 peptides, with the exception of CARP-1 (1–198Y192/F), involves the activation of p38 stress-activated protein kinase and caspase-9. Moreover, administration of TAT-CARP-1 (1–198), but not TAT-tagged enhanced green fluorescent protein or TAT-CARP-1 (1–198Y192/F), inhibits growth of human breast cancer cell–derived tumor xenografts in SCID mice. We conclude that CARP-1 is a suppressor of human breast cancer growth, and its expression is diminished in tumors, in part, by methylation-dependent silencing. [Mol Cancer Ther 2007;6(5):1661–72]
PLOS ONE | 2011
Hossain Ali Mondal; Dipankar Chakraborti; Pralay Majumder; Pampa Roy; Amit Roy; Swati Gupta Bhattacharya; Sampa Das
Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects.
Molecular Biology of the Cell | 2016
George Aranjuez; Ashley Burtscher; Ketki Sawant; Pralay Majumder; Jocelyn A. McDonald
A challenge for migrating collectives is to respond to physical changes in local environments. Border cells migrate collectively in the Drosophila ovary and require dynamic myosin to maintain their morphology. Border cells elevate active myosin in response to tissue compression. Myosin tension counteracts tissue constraints for collective movement.
Nature Communications | 2018
Xiang Qin; Edouard Hannezo; Thomas Mangeat; Chang Liu; Pralay Majumder; Jiaying Liu; Valérie Choesmel-Cadamuro; Jocelyn A. McDonald; Yiyao Liu; Bin Yi; Xiaobo Wang
The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation.The actomyosin cytoskeleton is known to spontaneously oscillate in many systems but the mechanism of this behavior is not clear. Here Qin et al. define a signaling network involving a ROCK-dependent self-activation loop and recruitment of myosin II to the cortex, followed by a local accumulation of myosin phosphatase that shuts off the signal.
Planta | 2006
Prasenjit Saha; Pralay Majumder; Indrajit Dutta; Tui Ray; Satyesh Chandra Roy; Sampa Das
Plant Science | 2005
Indrajit Dutta; Pralay Majumder; Prasenjit Saha; Krishna Ray; Sampa Das
Plant Biotechnology Journal | 2005
Indrajit Dutta; Prasenjit Saha; Pralay Majumder; Anindya Sarkar; Dipankar Chakraborti; Santanu Banerjee; Sampa Das