Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Bäumer is active.

Publication


Featured researches published by Dirk Bäumer.


PLOS Genetics | 2009

Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy.

Dirk Bäumer; Sheena Lee; George Nicholson; Joanna L. Davies; Nicholas J. Parkinson; Lyndsay M. Murray; Thomas H. Gillingwater; Olaf Ansorge; Kay E. Davies; Kevin Talbot

Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT–PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival.


Neurology | 2010

Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations.

Dirk Bäumer; David A. Hilton; S.M.L. Paine; Martin Turner; James Lowe; Kevin Talbot; Olaf Ansorge

Background: Juvenile amyotrophic lateral sclerosis (ALS) with basophilic inclusions is a form of ALS characterized by protein deposits in motor neurons that are morphologically and tinctorially distinct from those of classic sporadic ALS. The nosologic position of this type of ALS in the molecular pathologic and genetic classification of ALS is unknown. Methods: We identified neuropathologically 4 patients with juvenile ALS with basophilic inclusions and tested the hypothesis that specific RNA binding protein pathology may define this type of ALS. Immunohistochemical findings prompted us to sequence the fused in sarcoma (FUS) gene. Results: Motor symptoms began between ages 17 and 22. Disease progression was rapid without dementia. No family history was identified. Basophilic inclusions were strongly positive for FUS protein but negative for TAR DNA binding protein 43 (TDP-43). Granular and compact FUS deposits were identified in glia and neuronal cytoplasm and nuclei. Ultrastructure of aggregates was in keeping with origin from fragmented rough endoplasmic reticulum. Sequencing of all 15 exons of the FUS gene in 3 patients revealed a novel deletion mutation (c.1554_1557delACAG) in 1 individual and the c.1574C>T (P525L) mutation in 2 others. Conclusion: Juvenile ALS with basophilic inclusions is a FUS proteinopathy and should be classified as ALS-FUS. The FUS c.1574C>T (P525L) and c.1554_1557delACAG mutations are associated with this distinct phenotype. The molecular genetic relationship with frontotemporal lobar degeneration with FUS pathology remains to be clarified.


Neurobiology of Aging | 2014

Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion

Adrian James Waite; Dirk Bäumer; Simon East; James Neal; Huw R. Morris; Olaf Ansorge; Derek J. Blake

An intronic G4C2 hexanucleotide repeat expansion in C9ORF72 is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several mechanisms including RNA toxicity, repeat-associated non-AUG translation mediated dipeptide protein aggregates, and haploinsufficiency of C9orf72 have been implicated in the molecular pathogenesis of this disorder. The aims of this study were to compare the use of two different Southern blot probes for detection of repeat expansions in an amyotrophic lateral sclerosis and frontotemporal lobar degeneration pathological cohort and to determine the levels of C9orf72 transcript variants and protein isoforms in patients versus control subjects. Our Southern blot studies identified smaller repeat expansions (250–1800 bp) that were only detectable with the flanking probe highlighting the potential for divergent results using different Southern blotting protocols that could complicate genotype–phenotype correlation studies. Further, we characterize a new C9orf72 antibody and show for the first time decreased C9orf72 protein levels in the frontal cortex from patients with a pathological hexanucleotide repeat expansion. These data suggest that a reduction in C9orf72 protein may be a consequence of the disease.


Human Molecular Genetics | 2010

Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy

Lyndsay M. Murray; Sheena Lee; Dirk Bäumer; Simon H. Parson; Kevin Talbot; Thomas H. Gillingwater

The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The extent to which these developmental pathways contribute to selective vulnerability and pathology in the mammalian neuromuscular system in vivo remains unclear. Here, we have investigated the pre-symptomatic development of neuromuscular connectivity in differentially vulnerable motor neuron populations in Smn(-/-);SMN2 mice, a model of severe SMA. We show that reduced Smn levels have no detectable effect on morphological correlates of pre-symptomatic development in either vulnerable or stable motor units, indicating that abnormal pre-symptomatic developmental processes are unlikely to be a prerequisite for subsequent pathological changes to occur in vivo. Microarray analyses of spinal cord from two different severe SMA mouse models demonstrated that only minimal changes in gene expression were present in pre-symptomatic mice. In stark contrast, microarray analysis of late-symptomatic spinal cord revealed widespread changes in gene expression, implicating extracellular matrix integrity, growth factor signalling and myelination pathways in SMA pathogenesis. Taken together, these data suggest that reduced Smn levels induce SMA pathology by instigating rapidly progressive neurodegenerative pathways in lower motor neurons around the time of disease onset rather than by modulating pre-symptomatic neurodevelopmental pathways.


BMC Neuroscience | 2008

TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy

Bradley J. Turner; Dirk Bäumer; Nicholas J. Parkinson; Jakub Scaber; Olaf Ansorge; Kevin Talbot

BackgroundRedistribution of nuclear TAR DNA binding protein 43 (TDP-43) to the cytoplasm and ubiquitinated inclusions of spinal motor neurons and glial cells is characteristic of amyotrophic lateral sclerosis (ALS) pathology. Recent evidence suggests that TDP-43 pathology is common to sporadic ALS and familial ALS without SOD1 mutation, but not SOD1-related fALS cases. Furthermore, it remains unclear whether TDP-43 abnormalities occur in non-ALS forms of motor neuron disease. Here, we characterise TDP-43 localisation, expression levels and post-translational modifications in mouse models of ALS and spinal muscular atrophy (SMA).ResultsTDP-43 mislocalisation to ubiquitinated inclusions or cytoplasm was notably lacking in anterior horn cells from transgenic mutant SOD1G93A mice. In addition, abnormally phosphorylated or truncated TDP-43 species were not detected in fractionated ALS mouse spinal cord or brain. Despite partial colocalisation of TDP-43 with SMN, depletion of SMN- and coilin-positive Cajal bodies in motor neurons of affected SMA mice did not alter nuclear TDP-43 distribution, expression or biochemistry in spinal cords.ConclusionThese results emphasise that TDP-43 pathology characteristic of human sporadic ALS is not a core component of the neurodegenerative mechanisms caused by SOD1 mutation or SMN deficiency in mouse models of ALS and SMA, respectively.


Journal of the Royal Society of Medicine | 2014

Advances in motor neurone disease

Dirk Bäumer; Kevin Talbot; Martin Turner

Summary Motor neurone disease (MND), the commonest clinical presentation of which is amyotrophic lateral sclerosis (ALS), is regarded as the most devastating of adult-onset neurodegenerative disorders. The last decade has seen major improvements in patient care, but also rapid scientific advances, so that rational therapies based on key pathogenic mechanisms now seem plausible. ALS is strikingly heterogeneous in both its presentation, with an average one-year delay from first symptoms to diagnosis, and subsequent rate of clinical progression. Although half of patients succumb within 3–4 years of symptom onset, typically through respiratory failure, a significant minority survives into a second decade. Although an apparently sporadic disorder for most patients, without clear environmental triggers, recent genetic studies have identified disease-causing mutations in genes in several seemingly disparate functional pathways, so that motor neuron degeneration may need to be understood as a common final pathway with a number of upstream causes. This apparent aetiological and clinical heterogeneity suggests that therapeutic studies should include detailed biomarker profiling, and consider genetic as well as clinical stratification. The most common mutation, accounting for 10% of all Western hemisphere ALS, is a hexanucleotide repeat expansion in C9orf72. This and several other genes implicate altered RNA processing and protein degradation pathways in the core of ALS pathogenesis. A major gap remains in understanding how such fundamental processes appear to function without obvious deficit in the decades prior to symptom emergence, and the study of pre-symptomatic gene carriers is an important new initiative.


Expert Reviews in Molecular Medicine | 2010

The role of RNA processing in the pathogenesis of motor neuron degeneration

Dirk Bäumer; Olaf Ansorge; Mara Almeida; Kevin Talbot

Motor neurons are large, highly polarised cells with very long axons and a requirement for precise spatial and temporal gene expression. Neurodegenerative disorders characterised by selective motor neuron vulnerability include various forms of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). A rapid expansion in knowledge on the pathophysiology of motor neuron degeneration has occurred in recent years, largely through the identification of genes leading to familial forms of ALS and SMA. The major emerging theme is that motor neuron degeneration can result from mutation in genes that encode factors important for ribonucleoprotein biogenesis and RNA processing, including splicing regulation, transcript stabilisation, translational repression and localisation of mRNA. Complete understanding of how these pathways interact and elucidation of specialised mechanisms for mRNA targeting and processing in motor neurons are likely to produce new targets for therapy in ALS and related disorders.


Journal of Neurology, Neurosurgery, and Psychiatry | 2009

TARDBP in amyotrophic lateral sclerosis: identification of a novel variant but absence of copy number variation

Dirk Bäumer; Nicholas J. Parkinson; Kevin Talbot

Background: Mutations in the gene encoding TDP-43 have been identified in both familial and sporadic amyotrophic lateral sclerosis (ALS). Methods: A mutation screen and copy number analysis in a motor neuron disease clinic cohort was conducted to characterise the genetic contribution of TARDBP. Results: A novel missense mutation in a highly conserved region of TDP-43 was identified in a patient with sporadic ALS. The mutation is in close vicinity to previously identified changes. Copy number variation abnormalities were not detected. Conclusions: The findings stress the importance of TDP-43 in the pathogenesis of sporadic ALS.


Acta Neuropathologica | 2014

FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion

Dirk Bäumer; Simon East; Bing Tseu; Adam Zeman; David A. Hilton; Kevin Talbot; Olaf Ansorge

Polyglutamine expansions in the ataxin-2 gene (ATXN2) cause autosomal dominant spinocerebellar ataxia type 2 (SCA2), but have recently also been associated with amyotrophic lateral sclerosis (ALS). We present clinical and pathological features of a family in which a pathological ATXN2 expansion led to frontotemporal lobar degeneration with ALS (FTLD-ALS) in the index case, but typical SCA2 in a son, and compare the neuropathology with a case of typical SCA2. The index case shares the molecular signature of SCA2 with prominent polyglutamine and p62-positive intranuclear neuronal inclusions mainly in the pontine nuclei, while harbouring more pronounced neocortical and spinal TDP-43 pathology. We conclude that ATXN2 mutations can cause not only ALS, but also a neuropathological overlap syndrome of SCA2 and FTLD presenting clinically as pure FTLD-ALS without ataxia. The cause of the phenotypic heterogeneity remains unexplained, but the presence of a CAA-interrupted CAG repeat in the FTLD case in this family suggests that one potential mechanism may be variation in repeat tract composition between members of the same family.


Neurology | 2014

Progressive hemiparesis (Mills syndrome) with aphasia in amyotrophic lateral sclerosis.

Dirk Bäumer; Richard Butterworth; Ricarda A. Menke; Kevin Talbot; Monika Hofer; Martin Turner

The onset of motor symptoms in amyotrophic lateral sclerosis (ALS) is strikingly focal. In three-quarters of cases, weakness emerges unilaterally in one limb, typically spreading contiguously over months to become bilateral.1 An extremely rare clinical syndrome of upper motor neuron–predominant, progressive hemiparesis was first described by American neurologist Charles Karsner Mills (1845–1930).2 More typical ALS shares a common histopathologic signature with frontotemporal dementia (FTD), consisting of ubiquitinated neuronal and glial inclusions containing the DNA and RNA binding protein TDP-43. Cognitive impairment may be detected in at least one-third of ALS cases and involves mainly deficits in language, executive function, and fluency, with variable levels of behavioral impairments that all have overlap with the purer FTD syndromes. Frank FTD is seen in up to 15% of patients with ALS, in whom it typically occurs before or soon after the development of motor symptoms and is associated with a more rapid disease progression.3

Collaboration


Dive into the Dirk Bäumer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon East

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huw R. Morris

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Hofer

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge