Sheena Lee
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sheena Lee.
PLOS Genetics | 2009
Chris Church; Sheena Lee; Eleanor A. L. Bagg; James S. McTaggart; Robert M. J. Deacon; Thomas Gerken; Angela Lee; Lee Moir; Jasmin Mecinović; Mohamed Mohideen Quwailid; Christopher J. Schofield; Frances M. Ashcroft; Roger D. Cox
Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity.
eLife | 2012
Anca M. Farcas; Neil P. Blackledge; Ian Sudbery; Hannah K. Long; Joanna F. McGouran; Nathan R. Rose; Sheena Lee; David Sims; Andrea Cerase; Thomas W. Sheahan; Haruhiko Koseki; Neil Brockdorff; Chris P. Ponting; Benedikt M. Kessler; Robert J. Klose
CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs. DOI: http://dx.doi.org/10.7554/eLife.00205.001
PLOS Genetics | 2009
Dirk Bäumer; Sheena Lee; George Nicholson; Joanna L. Davies; Nicholas J. Parkinson; Lyndsay M. Murray; Thomas H. Gillingwater; Olaf Ansorge; Kay E. Davies; Kevin Talbot
Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT–PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival.
Human Molecular Genetics | 2010
Lyndsay M. Murray; Sheena Lee; Dirk Bäumer; Simon H. Parson; Kevin Talbot; Thomas H. Gillingwater
The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The extent to which these developmental pathways contribute to selective vulnerability and pathology in the mammalian neuromuscular system in vivo remains unclear. Here, we have investigated the pre-symptomatic development of neuromuscular connectivity in differentially vulnerable motor neuron populations in Smn(-/-);SMN2 mice, a model of severe SMA. We show that reduced Smn levels have no detectable effect on morphological correlates of pre-symptomatic development in either vulnerable or stable motor units, indicating that abnormal pre-symptomatic developmental processes are unlikely to be a prerequisite for subsequent pathological changes to occur in vivo. Microarray analyses of spinal cord from two different severe SMA mouse models demonstrated that only minimal changes in gene expression were present in pre-symptomatic mice. In stark contrast, microarray analysis of late-symptomatic spinal cord revealed widespread changes in gene expression, implicating extracellular matrix integrity, growth factor signalling and myelination pathways in SMA pathogenesis. Taken together, these data suggest that reduced Smn levels induce SMA pathology by instigating rapidly progressive neurodegenerative pathways in lower motor neurons around the time of disease onset rather than by modulating pre-symptomatic neurodevelopmental pathways.
The EMBO Journal | 2014
Keith W. Vance; Stephen N. Sansom; Sheena Lee; Vladislava Chalei; Lesheng Kong; Sarah Cooper; Peter L. Oliver; Chris P. Ponting
Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome‐wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate‐conserved and central nervous system‐expressed lncRNA transcribed from a locus upstream of the gene encoding the PAX6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neural differentiation. Paupar acts in a transcript‐dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with PAX6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large‐scale transcriptional programmes.
Cerebral Cortex | 2009
Anna Hoerder-Suabedissen; Wei Zhi Wang; Sheena Lee; Kay E. Davies; André M. Goffinet; Sonja Rakic; John G. Parnavelas; Kerstin Reim; Margareta Nicolić; Ole Paulsen; Zoltán Molnár
The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is essential. Only by determining the molecular taxonomy of this diverse class of neurons can we identify the subpopulations that may contribute differentially to cortical development. We identified novel markers for murine subplate cells by comparing gene expression of subplate and layer 6 of primary visual and somatosensory cortical areas of postnatal day (P)8 old mice using a microarray-based approach. We examined the utility of these markers in well-characterized mutants (reeler, scrambler, and p35-KO) where the subplate is displaced in relation to the cortical plate. In situ hybridization or immunohistochemistry confirmed subplate-selective expression of complexin 3, connective tissue growth factor, nuclear receptor-related 1/Nr4a2, and monooxygenase Dbh-like 1 while transmembrane protein 163 also had additional expression in layer 5, and DOPA decarboxylase was also present in the white matter. Localization of marker-positive cells in the reeler and p35-KO cortices suggests different subpopulations of subplate cells. These new markers open up possibilities for further identification of subplate subpopulations in research and in neuropathological diagnosis.
Current Biology | 2012
Peter L. Oliver; Melanie V. Sobczyk; Elizabeth S. Maywood; Benjamin Edwards; Sheena Lee; Achilleas Livieratos; Henrik Oster; Rachel Butler; Sofia I.H. Godinho; Katharina Wulff; Stuart N. Peirson; Simon P. Fisher; Johanna E. Chesham; Janice W. Smith; Michael H. Hastings; Kay E. Davies; Russell G. Foster
Summary Sleep and circadian rhythm disruption has been widely observed in neuropsychiatric disorders including schizophrenia [1] and often precedes related symptoms [2]. However, mechanistic basis for this association remains unknown. Therefore, we investigated the circadian phenotype of blind-drunk (Bdr), a mouse model of synaptosomal-associated protein (Snap)-25 exocytotic disruption that displays schizophrenic endophenotypes modulated by prenatal factors and reversible by antipsychotic treatment [3, 4]. Notably, SNAP-25 has been implicated in schizophrenia from genetic [5–8], pathological [9–13], and functional studies [14–16]. We show here that the rest and activity rhythms of Bdr mice are phase advanced and fragmented under a light/dark cycle, reminiscent of the disturbed sleep patterns observed in schizophrenia. Retinal inputs appear normal in mutants, and clock gene rhythms within the suprachiasmatic nucleus (SCN) are normally phased both in vitro and in vivo. However, the 24 hr rhythms of arginine vasopressin within the SCN and plasma corticosterone are both markedly phase advanced in Bdr mice. We suggest that the Bdr circadian phenotype arises from a disruption of synaptic connectivity within the SCN that alters critical output signals. Collectively, our data provide a link between disruption of circadian activity cycles and synaptic dysfunction in a model of neuropsychiatric disease.
Cerebral Cortex | 2012
Franziska Oeschger; Wei-Zhi Wang; Sheena Lee; Fernando García-Moreno; André M. Goffinet; Maria L. Arbonés; Sonja Rakic; Zoltán Molnár
The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells.
eLife | 2014
Vladislava Chalei; Stephen N. Sansom; Lesheng Kong; Sheena Lee; Keith W. Vance; Chris P. Ponting
Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes. DOI: http://dx.doi.org/10.7554/eLife.04530.001
BMC Molecular Biology | 2009
Wei-Zhi Wang; Franziska Oeschger; Sheena Lee; Zoltán Molnár
BackgroundLaser capture microdissection enables the isolation of single cells or small cell groups from histological sections under direct microscopic observation. Combined with quantitative PCR or microarray, it is a very powerful approach for studying gene expression profiles in discrete cell populations. The major challenge for such studies is to obtain good quality RNA from small amounts of starting material.ResultsWe have developed a simple, flexible, and low-cost method for simultaneously producing RNA from discrete cell groups in embryonic day 15 mouse brain. In particular, we have optimized the following key steps in the procedure: staining, cryosectioning, storage of sections and harvesting of microdissected cells. We obtained the best results when staining 20 μm-thick sections with 1% cresyl violet in 70% ethanol and harvesting the microdissected tissue in RNA stabilization solution. In addition, we introduced three stop-points in the protocol which makes the tedious process of laser capture microdissection more flexible, without compromising RNA quality.ConclusionUsing this optimized method, we have consistently obtained RNA of high quality from all four simultaneously microdissected cell groups. RNA integrity numbers were all above 8, and long cDNA fragments (> 1.2 kb) were successfully amplified by reverse transcription PCR from all four samples. We conclude that RNAs isolated by this method are well suited for downstream quantitative PCR or microarray studies.